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SUMMARY

Metabolite-protein interactions control a variety of
cellular processes, thereby playing a major role in
maintaining cellular homeostasis. Metabolites com-
prise the largest fraction of molecules in cells, but
our knowledge of the metabolite-protein interactome
lags behind our understanding of protein-protein or
protein-DNA interactomes. Here, we present a che-
moproteomic workflow for the systematic identifica-
tion of metabolite-protein interactions directly in
their native environment. The approach identified a
network of known and novel interactions and binding
sites in Escherichia coli, and we demonstrated the
functional relevanceofanumberofnewly identified in-
teractions. Our data enabled identification of new
enzyme-substrate relationshipsandcasesofmetabo-
lite-induced remodeling of protein complexes. Our
metabolite-protein interactome consists of 1,678 in-
teractions and 7,345 putative binding sites. Our data
reveal functional and structural principles of chemical
communication, shed light on the prevalence and
mechanisms of enzyme promiscuity, and enable
extraction of quantitative parameters of metabolite
binding on a proteome-wide scale.

INTRODUCTION

Beyond their roles as intermediates in metabolic conversions,

metabolites serve as signals that directly or indirectly trigger

adaptive responses. Nutritional states, stress, and ecological

conditions influence the intracellular levels of hundreds of

thousands of metabolites, and the signals these molecules

mediate are transmitted through a series of molecular events,

including binding of metabolites to proteins. Different types of

functional interactions between proteins and metabolites

have been reported (Chubukov et al., 2014). The best charac-

terized interactions involve binding of metabolites to the

active site of enzymes as substrates, cofactors, or products

of enzymatic reactions. As allosteric regulators, metabolites

bind to sites that are different from active sites, rapidly and
358 Cell 172, 358–372, January 11, 2018 ª 2017 Elsevier Inc.
reversibly modifying protein activity (Gerosa and Sauer,

2011). Allosteric interactions with metabolites also influence

proteins with non-enzymatic functions such as transmem-

brane receptors (Changeux and Christopoulos, 2016) and

transcription factors (Motlagh et al., 2014). Metabolite binding

also regulates the assembly and function of protein com-

plexes (Milroy et al., 2014) and high-molecular weight protein

assemblies (O’Connell et al., 2012; Wu, 2013).

There are at least one million protein molecules in a bacterial

cell, (Milo, 2013) and metabolites outnumber proteins by about

100-fold (Bennett et al., 2009). Thus, there could be millions of

functionally relevant metabolite-protein binding events. Our

knowledge of the metabolite-protein interactome is likely very

partial, as the transient and low-affinity nature of metabolite-

protein interactions (Lindsley and Rutter, 2006) has prevented

systematic analyses similar to those performed to identify pro-

tein-protein (Hein et al., 2015) or protein-nucleic acid interac-

tions (Castello et al., 2012). Most characterized protein-metab-

olite interactions have been discovered via hypothesis-driven

experiments that rely on in vitro activity assays. These assays

are laborious, depend on choice of the relevant ligand, and pre-

clude the identification of interactions that do not change an

in vitro measurable activity. Methods involving chemical modi-

fication of metabolites or protein tagging (Diether and Sauer,

2017) have been restricted to studies of lipid-protein interac-

tions (Gallego et al., 2010; Niphakis et al., 2015) and hydropho-

bic metabolites (Li et al., 2010).

To enable a systematic analysis, unbiased with regard to both

metabolites and proteins, we developed a chemoproteomic

approach that combines limited proteolysis (LiP) with mass

spectrometry (MS) in the presence of unmodified metabolites.

We applied this strategy to the identification of known and novel

interactions in Escherichia coli, the organism with the arguably

best-characterized metabolic network (Keseler et al., 2013).

We identified an extensive network of known and previously un-

known metabolite-protein interactions and binding sites. Our

data revealed functional principles of metabolite sensing and

shed light on the prevalence and mechanisms of enzyme pro-

miscuity. Our analysis provides a framework to study the

effects of metabolite binding on the structure of proteins and

protein complexes and to evaluate the effect of metabolite con-

centration on metabolite-protein interactions in the context of

the cellular milieu.
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Figure 1. Workflow of the LiP-SMap Approach

(A) Whole-cell lysates extracted under native lysis conditions are treated or not with a metabolite. Metabolite binding to a protein alters local proteolytic sus-

ceptibility. A limited proteolysis step is performed with proteinase K (PK) under native conditions, followed by complete digestion with trypsin under denaturing

conditions to generate MS-measurable peptides. In the example, structurally informative peptides are produced for the protein FixJ bound to aspartyl phosphate

(PDB: 1DBW) and its ligand-free form (PDB: 1D5W). Peptides specific for the bound and unbound conformations (conformotypic peptides) are depicted in red.

(B) Schematic of FixJ peptides generated in the presence and absence of aspartyl phosphate. Binding prevents PK cleavage, resulting in the disappearance of

two peptides with non-tryptic ends (HT) and in an increase in concentration of the associated fully tryptic peptide (FT).

(C) The three peptides are detected by MS.
RESULTS

Systematic Identification of Protein-Small Molecule
Interactions in Native Proteome Extracts
Metabolite-protein interactions typically result in local or in

global alterations of protein structures (Boehr et al., 2009; Nussi-

nov and Tsai, 2013). We reasoned that detecting ligand-induced

structural alterations on a proteome-wide scale could provide a

universal readout of protein-small molecule interactions. Build-

ing on previous work (Feng et al., 2014), we devised a workflow,

which we term LiP-small molecule mapping (LiP-SMap), to sys-

tematically detect proteins that become differentially susceptible

to protease cleavage upon binding of a small molecule added to

a proteome extract.

In the LiP-SMapworkflow (Figure 1A), proteomes are extracted

under conditions that preserve native protein structures, and ex-
tracts are exposed to a small molecule of interest. Samples are

subjected to limited proteolysis with the broad-specificity prote-

ase proteinase K to generate structure-specific protein fragments

(Figure 1B). Fragments are then digested with the sequence-spe-

cific protease trypsin to generate peptide mixtures amenable to

bottom-up proteomic analysis. Peptides are analyzed by liquid-

chromatography-coupled tandem MS, and LiP patterns of pro-

teomes processed in the presence and absence of the small

molecule are compared using a label-free quantitative MS

approach. Our pipeline includes a quantitative unbiased shotgun

proteomic step and a validation step based on data-independent

acquisition (Gillet et al., 2016) (Figure 1C; STAR Methods).

Benchmarking the LiP-SMap Approach
To validate our approach, we chose three metabolites with

different levels of promiscuity (Figure S1A; Table S1): adenosine
Cell 172, 358–372, January 11, 2018 359



50-triphosphate (ATP), a highly promiscuousmetabolite for which

more than 600 interactions are known, L-phenylalanine (L-Phe),

for which only 15 interactions are known, and phosphoenolpyr-

uvate (PEP), a metabolite of intermediate promiscuity. We

compared proteolytic patterns of the E. coli proteome incubated

in the absence and upon addition of two physiologically relevant

concentrations of metabolite (Table S1). Proteins with altered

proteolytic patterns are considered putative metabolite binding

proteins (MBPs), and peptides with altered abundance are

referred to as conformotypic peptides. The largest number of

MBPs, 231, was observed for ATP. For PEP and L-Phe, we de-

tected 129 and 41 MBPs, respectively, in agreement with known

binding specificities. Between 30% and 95% more MBPs were

observed at the higher concentration of each metabolite than

at the lower concentration (Figure S1B).

The LiP-SMap approach captured 104 previously known

binding events. Among the 231 MBPs detected for ATP

were 92 known ATP binding proteins. For PEP, our approach

detected nine of the 58 known MBPs, most notably the PEP

producing enolase and the PEP-activated phosphate acetyl-

transferase Pta and fructose-1,6–bisphosphatase. Among

the 41 MBPs detected for L-Phe were three of 15 known inter-

actors (Table S1). At least one-third of the MBPs detected at

the lower concentrations for ATP, PEP, and L-Phe involved

previously characterized interactions for each metabolite

(Figure 2A). More than 90% of MBPs identified at the lower

concentration of each metabolite were also detected at the

higher concentrations and the fraction of newly discovered in-

teractions increased (Figures 2B and S1B), suggesting that the

higher concentrations enable recovery of lower affinity interac-

tions. MBPs of ATP, PEP, and L-Phe did not overlap signifi-

cantly (Table S1). Of the known interactions recovered, more

were allosteric (36.8%) than catalytic (21.2%) (Figure 2C).

Detection of known interactions increased with protein

sequence coverage achieved with MS (Figures S1C–S1E).

These results suggest that, although LiP-SMap is not compre-

hensive due to proteome undersampling, the method enables

the detection of regulatory and catalytic metabolite-protein in-

teractions in an unbiased manner and directly in a complex

biological matrix.

To evaluate the likelihood that the method results in false pos-

itive identifications, we used LiP-SMap to identify interactors of

the antifungal drug cerulenin, which is known to interact with

only one protein, Fas2. LiP-SMap analyses of yeast cell extracts

treated with cerulenin showed that, of the more than 2,500 pro-

teins identified, only Fas2 had an altered proteolytic pattern in

treated relative to untreated extracts (Figure 2D). This experi-

ment demonstrates that LiP-SMap is unlikely to result in false

positive identifications.

A Global Map of Metabolite-Protein Interactions
and Their Binding Sites
We then applied the LiP-SMapworkflow to the unbiased analysis

of metabolite-protein interactions in E. coli. We focused on 20

metabolites, most of which are intermediates of conserved cen-

tral carbon metabolism (Figure 3A). We also included four amino

acids and seven nucleoside phosphates, and 30, 50-cyclic aden-

osine monophosphate (cAMP) as a prototype of a signaling
360 Cell 172, 358–372, January 11, 2018
molecule. These 20 metabolites have a broad range of hydro-

phobicities, molecular weights, and charges.

We first removed endogenous metabolites from the E. coli

proteome extracts by gel filtration. This was efficient for all

nine metabolites tested (Figure S1F). Analysis was then per-

formed at two physiologically relevant metabolite concentra-

tions (Table S1) (Bennett et al., 2009; Gerosa et al., 2015),

with the higher concentration mimicking maximal reported

in vivo values to maximize the likelihood of detecting interac-

tions spanning a broad range of affinities. Even at the higher

concentration, proteolytic patterns remained unchanged for

1,945 of the 2,565 detected proteins, suggesting that the cho-

sen experimental conditions did not result in non-specific bind-

ing (Figure S2A).

Overall, we identified 1,678 protein-metabolite interactions. Of

these, 1,447 had not been previously reported. Many novel inter-

actions involved organic acids and sugar phosphates (377 and

410, respectively) (Figures 3B and S2B). Of the newly detected

metabolite-binding proteins, 76 were proteins without an anno-

tated function; the metabolites these proteins interact with may

provide clues about biological activities (Table S1).

We estimated the false discovery rate by comparison of inter-

actions we detected for metabolic proteins with known interac-

tions from the BRENDA database (http://www.brenda-enzymes.

org/) (Figure S2C; Table S2). We considered true positives inter-

actions reported in BRENDA that were captured by our approach,

and true negatives those not reported in BRENDA and not identi-

fied by LiP-SMap. Interactions detected by our method that were

not present in BRENDAwere considered false positives. The false

discovery rate was 5.5%, and the fraction of known interactions

recovered increased with increasing evidence of the reported in-

teractions (Figures S2D–S2F; STAR Methods). Importantly, this

false discovery rate is an overestimate, since many of what we

considered false positives in this exercise are likely to be novel in-

teractions. We also developed a scoring system to estimate the

confidence in interactions detected with criteria based on param-

eters from our experiments and on the degree of supporting liter-

ature evidence (STAR Methods). Of the 1,678 interactions de-

tected, 54% were supported by multiple lines of evidence

(Figures 3C and S2G; Table S2), indicating that a large fraction

of the dataset comprises high confidence interactions.

Conformotypic peptides identified upon treatment of cells

with a given metabolite define the regions of a protein that

are structurally affected by binding of the metabolite. For

example, in the LiP-SMap experiment with cerulenin we de-

tected only one Fas2 peptide with altered abundance upon

drug treatment, and this peptide is at the known drug binding

site (Figure 3D; Table S2). To determine whether conformo-

typic peptides pinpoint metabolite binding sites on a prote-

ome-wide scale, we retrieved all experimentally determined

structures of protein-metabolite complexes from the Protein

Data Bank Ligand Expo (http://ligand-expo.rcsb.org/) and

measured the minimal distances between atoms of the metab-

olite and those of conformotypic peptides. Conformotypic

peptides identified by LiP-SMap were most frequently posi-

tioned in very close proximity to binding sites (Figures 3E

and 3F; Table S3). The median distance between bound

metabolite and the closest conformotypic peptide atom was

http://www.brenda-enzymes.org/
http://www.brenda-enzymes.org/
http://ligand-expo.rcsb.org/
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Figure 2. Benchmarking the LiP-SMap Approach

(A) Volcano plots of LiP-SMap experiments with low (top panels) and high (bottom panels) concentrations of ATP, PEP, and L-Phe. Peptide mixtures produced in

the presence and absence of each metabolite are compared. Fold changes (FC) in peptide abundance in treated versus untreated samples are shown as a

function of significance. Significance cutoffs were q = 0.01 (Bayes moderated t tests) and FC = 2 (n = 3). Each protein is represented with a single data point in the

graph, corresponding to the peptide with the lowest q value. Known catalytic and allosteric interactions are in blue and cyan, respectively. Novel interactions are

in red. Bars indicate the total number of known (blue) and novel (red) MBPs identified.

(B) Venn diagrams show the number of MBPs identified at the low and high concentrations. % Retention is the percentage of protein identifications from the

lowest metabolite concentration that were retained at the higher concentration.

(C) Relative fraction of recovered known allosteric (cyan) or catalytic (blue) interactions over total. Numbers in brackets and below the bars indicate the number

found and total known targets, respectively. All numbers refer to proteins for which at least one peptide was detected by MS.

(D) Volcano plot representation as in (A) of the LiP-SMap experiments with cerulenin.

See also Figure S1.
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Figure 3. Global Map of Metabolite-Protein Interactions

(A) Representation of the central carbon metabolism network with input, intermediate, and output metabolites as nodes. Metabolites analyzed by LiP-SMap

(orange) cover a broad range of reactions. PP = pentose phosphate; ED = Entner-Doudoroff.

(legend continued on next page)
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4.41 Å, significantly lower than the 14.07 Å median distance

from atoms of all peptides detected (two-sided Wilcoxon

test, p < 2.2 3 10�16). Similar results were obtained when hol-

ocomplex structures with only one conformotypic peptide

identified were considered (p < 2.93 3 10�6; median minimal

distances of 7.87 and 14.07 Å, respectively; Figure 3G; Table

S3). We observed no significant biases in terms of protein sec-

ondary structure between conformotypic and non-conformo-

typic peptides (Figure S3A). Thus, our method provided a pep-

tide-level resolution map of metabolite binding sites on a

proteome-wide scale.

Features of the Metabolite-Protein Interactome
The MBPs identified included proteins encompassing a wide

range of functions with localization in membranes and cytosol

(Figures S3B and S3C). Only half of the discovered metabolite-

protein interactions involved metabolic enzymes (Figure S3D).

Metabolite binding often preferentially occurred within the

metabolic sub-network known to involve the metabolites of

interest. For example, MBPs identified for phenylalanine and

valine were enriched for tyrosine, tryptophan, and phenylalanine

metabolism and valine, leucine, and isoleucine metabolism,

respectively (hypergeometric tests: p < 5.65 3 10�4 and

p < 3.87 3 10�7). MBPs identified for glycolysis intermediates

fructose-1,6-bisphosphate (FBP) and PEP were both enriched

in proteins from ‘‘glycolysis-gluconeogenesis,’’ and FBP-binding

proteins were also enriched for the pentose phosphate pathway

class. Proteins that bound ATP, ADP, guanosine 50-triphosphate
(GTP), guanosine 50-monophosphate (GMP), and citrate were

enriched in purine and pyrimidine biosynthesis pathway (p <

5 3 10�3). No biases for specific catalytic mechanisms based

on analysis of enzyme classification (EC) numbers were

observed (Figure S3E).

Next, we assessed the relationship betweenmetabolite-sensi-

tive proteome determined by LiP-SMap and the ‘‘core prote-

ome’’ of E. coli, a set of 356 proteins consistently expressed

across environmental conditions (Yang et al., 2015). The relative

frequency of core proteome proteins was significantly higher

among MBPs discovered with LiP-SMap than in the set of de-

tected proteins (Fisher’s exact test, p = 2.043 10�8), and several

core proteins interacted with multiple metabolites (Figure S4A;

Table S4). E. coli genes that showed high variability in their

expression levels (Schmidt et al., 2016) included only a few

MBPs. Additionally, MBPs showed a significantly smaller varia-

tion in abundances across growth conditions than the rest of

the E. coli proteome (Figure S4B). This suggests that many tran-

scriptionally stable and core proteins respond to metabolite-

mediated signals.
(B) Interactions detected by LiP-SMap grouped based on the chemical nature of t

interactions measured. Stacked bars indicate the number of known (bottom) and

(C) Distribution of the 1,678 LiP-SMap interactions binned according to evidence

(D) Structure of Fas2 bound to cerulenin (orange); conformotypic peptide is indic

(E) Representative MBP complexes with ATP, PEP, and L-Phe with ligand in oran

angstroms) between peptides and metabolite are reported (PDB: 1Q12, 1G7U, 3

(F) Representative MBP-ligand complexes for GTP and NAD (PDB: 1HK8, 3GR6

(G) Distributions of minimal Euclidean distances between metabolite and prote

ocomplex structures with only one conformotypic peptide identified.

See also Figures S2, S3, and S4 and Tables S1, S2, and S3.
Novel Regulatory Interactions
The novel interactions we detected could reflect different types

of functional events including allosteric or catalytic events or

ligand-induced regulation of the assembly of protein complexes.

Thus, we next systematically evaluated these three types

of functional interactions. To evaluate whether our detected

metabolite-protein interactions included novel cases of allosteric

interactions, we focused on metabolite interactions with en-

zymes from central carbon metabolism (Figure 4A; Table S4)

for which in vitro enzyme assays are available. We focused on

the interaction of citrate with phosphoenolpyruvate carboxylase

(Ppc), FBP with the PEP synthetase regulatory protein (PpsR),

and FBP with glucose-6-phosphate dehydrogenase (G6PDH).

The carboxylation of PEP to oxaloacetate catalyzed by Ppc re-

plenishes carbon removed from the tricarboxylic acid (TCA) cy-

cle (Figure S4C). Allosteric activation of Ppc by acetyl-CoA and

FBP (Sanwal and Maeba, 1966), the latter detected in our LiP-

SMap experiment (Figure 4A), ensures rapid inactivation of Ppc

when glycolytic flux is low (Xu et al., 2012). We identified TCA cy-

cle intermediate citrate as a potential interactor of Ppc (Fig-

ure 4A). To test whether citrate influences the catalytic activity

of Ppc, we performed a coupled activity assay that recapitulates

the reported synergistic activation of Ppc by acetyl-CoA and

FBP (Figure S4D). In this assay, citrate acted as a potent inhibitor

of Ppc activity (Figure 4B). This inhibition was not significantly

affected by FBP or acetyl-CoA (Figure 4B), suggesting that cit-

rate-mediated inhibition of Ppc overrides activation by FBP

and acetyl-CoA. Other metabolites that our approach did not

identify as Ppc-binding molecules did not show an effect on

Ppc activity (Figure S4E).

We also identified FBP as a new regulator of G6PDH activity at

concentrations of FBP above 1 mM (Figure S4C). FBP addition

reduced both the Km and Vmax of G6PDH, suggesting amixed in-

hibition mechanism (Figure 4C).

Finally, we confirmed interaction of FBP with PpsR, a dual

kinase/phosphatase that catalyzes the ADP-dependent phos-

phorylation (which inactivates) and the phosphate-dependent

dephosphorylation (which activates) of PEP synthetase (PpsA)

(Burnell, 2010). PpsR was identified as an FBP binder in the LiP-

SMap screen at both FBP concentrations, whereas PpsA was

not. Therefore, we hypothesized that FBP regulates PpsA activity

indirectly through an allosteric interaction with PpsR. FBP alone

did not alter PpsA activity (Figure S4F); however, addition of

5 mM FBP caused a modest (�15%) but significant reduction in

PpsA activity in the presence of PpsR (Figure 4D). Thus, the

FBP-PpsR binding event detected by LiP-SMap suggests a regu-

lation scheme in which FBP indirectly regulates PpsA through the

allosteric regulation of its regulating kinase PpsR.
he metabolite involved. Numbers on top of the bars indicate the total number of

newly identified (top) MBPs.

score.

ated by green ribbons.

ge and conformotypic peptides in green. The minimal Euclidean distances (in

PCO).

).

in atoms for all detected peptides and for all conformotypic peptides of hol-
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Figure 4. Discovery of Novel Regulatory Interactions

(A) Overview of protein-metabolite interactions identified with LiP-SMap within the central carbon metabolism. Blue and red indicate known and novel in-

teractions, respectively. Interactions selected for validation are framed in black. Anap. = anaplerosis.

(B) Activities of purified Ppc as a function of citrate concentration in the absence (upper left) or in the presence of 0.1 mM acetyl-CoA (upper right), 1 mM FBP

(bottom-left panel), or both (bottom right) normalized to the maximum activity observed in the absence of the effector. Error bars, SD (n = 4).

(C) G6PDH activity at different FBP concentrations in the presence of 2mMG6P normalized to themaximum activity observed (left) and relative G6PDH activity at

different G6P concentrations in the absence (black) or presence (red) of 5 mM FBP (right). Error bars, SD (n = 4). Km and Vmax were estimated by non-linear

regression.

(D) Schematic of PpsA activation assay. PpsA was inactivated by treatment with PpsR and ADP and reactivated by adding phosphate in the presence or absence

of FBP (upper panel). RT, room temperature. PpsA activity as fraction of the maximal PpsA activity without ADP/ATP (lower left). PpsA activity after 2.5 min. of

reactivation in 5 or 1 mM FBP normalized to signal in the absence of FBP (bottom right).

Error bars, SD (n = 4). See also Figure S4 and Table S4.
Novel Interactions at Catalytic Sites
We next asked how many detected interactions occurred at

active sites and thus might underlie catalytic events or cases

of competitive inhibition. To define an active site, we calcu-

lated Euclidean distances between conformotypic peptides

and natural reactants at active sites from experimentally

derived structural models of E. coli enzymes (Table S5). The
364 Cell 172, 358–372, January 11, 2018
median distance of this sample, 6.44 ± 0.55 Å, was signifi-

cantly different from the median value of 11.90 Å for the distri-

bution of the non-conformotypic peptides from the same hol-

ocomplexes (two-sided Wilcoxon test, p < 3.47 3 10�12;

Figure 5A). Based on these results, a distance of 6.44 Å

from the metabolite was used to define the boundaries of an

active site measurable with LiP-SMap; binding to a distal
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Figure 5. Proteome-wide Map of Metabolite Binding Sites

(A) Distribution of minimal Euclidean distances of all detected peptides and conformotypic peptides from active sites of enzyme-metabolite holocomplex

structures.

(B) Operational definition of active site specified by the volume of a sphere of 6.44 ± 0.55-Å radius.

(C) Structural mapping of interactions classified depending on the distance from active site.

(D) Prevalence of LiP-SMap interactions occurring at active or distal sites involving metabolites not previously associated with proteins known to bind a given

metabolite. Binding events at distal sites are defined as those with a distance from the active site boundaries of at least 11.66 Å. Non-classified (N.c.) cases are

those with distance between 6.44 and 11.66 Å.

(E) Positions of metabolite binding sites of the most promiscuous enzymes. Numbers in the boxes show the measured minimal distances from the active sites.

Green labels are relative to known reactant-enzyme pairs. EC are enzyme classification numbers.

(F) Time courses of fructose-1,6-bisphosphate (m/z 338.9884 FBP-H(+)) production by purified PfkB incubated with 2.5 mM fructose-6-phosphate (F6P) and

2.5 mM ATP in the presence of 5 mM potential effectors identified by LiP-SMap citrate (Cit), G6P, PEP, and GTP and in the presence of negative control malate

(Mal). Data are means ± SD (n = 3).

(G) Time courses of product formation and substrate consumption in the reaction converting 2.5 mM F6P (m/z 259.0231 HXP -H(+)) and 2.5 mM GTP (m/z

521.9825 GTP -H(+)) into fructose-1,6-bisphosphate (m/z 338.9884 FBP -H(+)) and GDP (m/z 442.0162 GDP -H(+)) catalyzed by purified PfkB.

Data represent mean values ± SD (n = 3). See also Figure S5 and Table S5.
site (Figures 5B, 5C, and S5A) could signify an allosteric site or

an additional catalytic site.

Of 1,665 conformotypic peptides mapped to enzymatic holo-

complexes, 612 (37%) from 59 MBPs were positioned at active

sites known to react with a different compound. Among those,

336 peptides had residues that could theoretically establish

hydrogen bonds with the catalytic core, since their distance

was less than 3.1 Å (Figures 5D, S5B, and S5C; Table S5).

Thus, our data indicate that a substantial fraction of active sites

interact withmetabolites different from those expected based on

the metabolic reactions they catalyzed. Known binding sites of
nicotinamide adenine dinucleotides NADP and NADPH, flavin

adenine dinucleotide (FAD), and flavin mononucleotide (FMN)

often interacted with compounds of heterogeneous chemistry

(Figures S5D and S5E).

Of the most promiscuous 78 MBPs, each interacted with at

least six different metabolites (Table S5). For the nine enzymes

for which active site structures are available, 41 of 61 conformo-

typic peptides werewithin the limits of the active site boundary of

6.44 Å (Figure 5E; Table S5), suggesting that enzyme promiscuity

mostly derives from substrate ambiguity. Among the catalytic

activities associated with the most promiscuous active sites
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were reductase and dehydrogenase activities and reactions that

involve transfer of phosphate groups. The regulatory subunit of

aspartate carbamoyltransferase (PyrI) was a notable exception

to this trend, since none of the newly identified metabolites

bound within the catalytic site (Figure 5E; Table S5). These re-

sults suggest that enzyme promiscuity is a wide-spread property

that mostly derives from binding clefts able to host diverse nat-

ural compounds.

To validate our prediction that certain metabolites interact with

enzyme active sites leading to novel catalytic events or cases of

competitive inhibition, we focused on the enzyme PfkB. Previ-

ously unknown interactions with citrate, G6P, PEP, and GTP

and the known interaction with ATP were detected by LiP-

SMap at the catalytic site of PfkB (Figure 5E). In in vitro PfkB ac-

tivity assays, addition of citrate, PEP, or GTP resulted in a reduc-

tion of PfkB activity, suggesting that these three metabolites act

as inhibitors of PfkB. No effect was observed for G6P or for ma-

late that was not shown by LiP-SMap to bind PfkB (Figures 5F

and S5F).

To determine whether the novel interactions could underlie

novel enzyme-substrate relationships, we tested structurally

similar compounds glucose-6-phosphate (instead of fructose-

6-phosphate) and GTP (instead of ATP) as alternative co-sub-

strates. Glucose-6-phosphate was not used as a substrate by

PfkB (Figure S5F). In contrast, PfkB did catalyze the reaction

with GTP and fructose-6-phosphate as substrates, and produc-

tion of GDP and FBP was observed at similar rates as in the con-

trol reaction with ATP and fructose-6-phosphate (Figures 5G and

S5G). These experiments demonstrate that, as suggested by our

initial LiP-SMap analysis, PfkB has a promiscuous active site.

Overall, these data indicate that LiP-SMap enables identification

of novel enzyme-substrate relationships and cases of competi-

tive inhibition.

High-Order Structural Effects Induced by Metabolite
Binding
Binding of metabolites may also regulate formation or dissocia-

tion of protein complexes or high-molecular weight protein as-

semblies (Aughey and Liu, 2015; O’Connell et al., 2012). The

latter should be detected in a LiP-SMap experiment as a gener-

alized increase or decrease, respectively, in proteolytic resis-

tance. For a subset of proteins, we detected responses to certain

metabolites that were indicative of large structural alterations.

We focused on 162 protein-metabolite pairs (involving 69 pro-

teins in total) for which at least 80% of conformotypic peptides

indicated increased or decreased resistance to proteolysis

upon metabolite binding (Figures S6A and S6B). Of the proteins

involved in these interactions, 110 became globally more prote-

ase sensitive and 52 more protease resistant. This subset in-

cludes 19 nucleotide-binding proteins, 12 oxidoreductases,

and six ligases or kinases (Figure 6A; Table S6). Of the 69 pro-

teins that underwent extensive structural rearrangements, 27

are known to form homo-complexes and 42 are subunits of

known hetero-complexes (Keseler et al., 2013). To capture addi-

tional metabolite-induced alterations to the structure of protein

hetero-complexes, we searched for cases in which conformo-

typic peptides from at least two different subunits of a known

hetero-complex consistently indicated increased or decreased
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resistance to proteolysis upon addition of a metabolite. We

found 18 additional cases in which addition of a metabolite to

the extract may alter the composition of known protein com-

plexes (Table S6).

We validated our observations using size-exclusion chroma-

tography of cell lysates coupled to MS (SEC-MS) (Kirkwood

et al., 2013). In these analyses, the assembly or disassembly of

protein complexes is reflected in changes in the elution volume

of the proteins involved. We focused on ATP as a test case.

Our analysis suggested that 39 proteins underwent high-order

structural rearrangements upon ATP addition. For 27 of the 39

proteins, we consistently observed a significant change in

elution volume in the presence versus the absence of ATP

(Table S6). SEC-MS profiles of non-ATP binding proteins were

not affected by ATP addition, and results were independent of

the quantification method used (Figures S6C and S6D).

For example, upon addition of ATP we observed a global in-

crease in proteolytic resistance of the protein GalF, which forms

a homo-oligomeric complex (Marolda and Valvano, 1996). The

SEC-MS profiles of GalF suggest that a transition from mono-

mer to pentamer or hexamer is induced by ATP (Figure 6B).

Similarly, the global increase in proteolytic resistance we

observed for the subunit IlvH of the acetolactate synthase com-

plex upon ATP addition was reflected by a shift in the SEC-MS

profile of IlvH (Figure 6C). This structural rearrangement could

indicate formation of previously reported IlvH oligomers or het-

ero-tetrameric complexes with IlvI (Vyazmensky et al., 1996)

(Figure S6E).

We observed massive shifts in the SEC-MS profiles of ribo-

somal subunits indicative of dissociation of the 50S and 30S

complexes in the presence of ATP (Figures 6D and S6F), in line

with the global increase in protease sensitivity that we observed

by LiP-SMap for subunits of these complexes.

Our data also recapitulated known cases of metabolite-

induced formation or dissolution of high-molecular weight pro-

tein assemblies. The DNA binding ATPase MinD became more

resistant to proteolysis in the presence of ATP and ADP, and

FtsZ, which is involved in cell division, became protease resis-

tant in the presence of GTP (Figures 6A and 6E). A change in

elution profile was also observed for MinD upon ATP-addition.

Interestingly, MinD and FtsZ are components of the division

septum that assemble during cytokinesis and have been shown

to form ATP- and GTP-dependent filamentous structures,

respectively (Mukherjee and Lutkenhaus, 1998; Suefuji et al.,

2002). We also measured increased protease sensitivity and a

consistent shift in the FtsZ SEC-MS profile for FtsZ in the pres-

ence of ATP (Figure S6G), which could imply that GTP and

ATP differentially regulate the assembly of FtsZ filaments or olig-

omeric state.

Overall these data indicate that LiP-SMap detects known

and novel cases of metabolite-induced assembly and disas-

sembly of protein complexes and high-molecular weight protein

assemblies.

Quantitative Parameters of Metabolite Binding
Last, we asked whether our data could be used to derive quan-

titative parameters of metabolite binding in the cellular environ-

ment. ATPwas added to E. coli lysates at concentrations ranging
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Figure 6. High-Order Structural Changes and Metabolite Binding

(A) MBPs that became globally protease resistant (green) or sensitive (gold) upon addition of metabolites.

(B) SEC-MS elution profiles of GalF when ATP was absent (blue line) or present (red line). Normalized abundance is the sum of peptide counts detected for each

SEC fraction relative to the maximum intensity. Monomeric GalF, 33 kDa.

(C) SEC-MS elution profiles of IlvH with (red) or without ATP (blue). Monomeric IlvH, 18 kDa.

(D) SEC-MS elution profiles of RplF, RplX, and RplV subunits of the 50S ribosome complex without (dashed lines) and with (solid lines) ATP.

(E) Abundances of conformotypic peptides for MinD (top) and FtsZ (bottom) are indicative of increased resistance to proteolysis upon binding to ATP and GTP,

respectively. Red lines indicate tryptic cleavage sites.

See also Figure S6 and Table S6.
from 1 to 25mM, and intensities of the 1,051 conformotypic pep-

tides as a function ATP concentration were plotted. In 602 cases,

the curves obtained were monotonic and hyperbolic, reminis-
cent of binding curves (Figure 7A, see Mendeley data in Data

and Software Availability), suggesting that the data could be

used to derive measures of affinities in the cell extract.
Cell 172, 358–372, January 11, 2018 367



A

B DC

EC50: 3.27 mM

0 5 10 15 20 25

0
0.2
0.4
0.6
0.8
1.0
1.2

ThrA
TFVDQEFAQIK

 ATP (mM)

S
tru

ct
ur

al
 re

sp
on

se

AckA
EGTRPAVVIPTNEELVIAQDASR

 ATP (mM)
0 5 10 15 20 25

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

S
tru

ct
ur

al
 re

sp
on

se

EC50: 2.20 mM

 ATP (mM)

S
tru

ct
ur

al
 re

sp
on

se

EC50: < 1 mM

0 5 10 15 20 25

0

1

2

3

4

5

DnaB
TAGLQPSDLIIVAAR

In-extract Kd 

(mM)

GuaC

Pta

ThrA

HflX

Gnd

FolE

FolD
NrdB

PyrI

NrdR

< 1

2.02

2.12

2.36

2.88

5.51

9.75

> 10

> 10

1,81 New ATP
binding proteins

In
-E

xt
ra

ct
 K

d  (
m

M
)

0
1

2
3

4
5

6
7

8
9

10

FolE
ATVAYIPKDSVIGLSK

0

1

2

3

0 5 10 15 20 25
ATP (mM)

 In-extract Kd: 5.51 mM S
tru

ct
ur

al
 re

sp
on

se

ATP

FolE

Figure 7. LiP-SMap Determines Metabolite Binding Affinities in Cellular Matrices

(A) Dose-response curves for three conformotypic peptides from DnaB, ThrA, and AckA. Differences between the log2 transformed mean intensities of a con-

formotypic peptides in the treated and untreated conditions were plotted versus metabolite concentration. Error bars, SE (n = 3).

(B) In-extract KDs for ATP of proteins for which ATP is an allosteric effector.

(C) Dose-response curve of conformotypic FolE peptide as a function of ATP concentration. Error bars, SE (n = 3). The position of the conformotypic peptide

identified is also shown within the structural model of FolE with ATP (PDB: 1A8R).

(D) Distribution of in-extract KD values extrapolated for newly discovered ATP-binding proteins.

See also Table S7.
ATP binding sites could be divided according to their struc-

tural responsiveness to ATP. About 15% of conformotypic pep-

tides showed saturating effects below 1 mM ATP. These pep-

tides mapped to 37 proteins, including 31 enzymes known to

use ATP as substrate or to produce ATP, such as the replicative

DNA helicase DnaB (Figure 7A, left). The structural responses of

391 peptides could be fit with a sigmoidal dose-response model

within the range of 0–25 mM ATP, as exemplified by titration

curves of peptides from the ThrA and AckA kinases (Figure 7A,

middle and right). Since effects detected by LiP-SMap depend

on the degree of occupancy of binding sites, these binding

curves are indirect measures of the affinity of the metabolite

for a given binding site, allowing extrapolation of the ATP con-

centration that produced a structural response equivalent to

half of the maximum, which we refer to as the in-extract dissoci-

ation constant (in-extract KD) (Table S7).

Binding sites of proteins with in-extract KD values for ATP in

the 1- to 10-mM range would not be saturated at the physio-

logical concentration of ATP of between 1 and 10 mM and

may mediate regulatory responses of allosteric nature. To

test this hypothesis we analyzed the in-extract KDs relative

to conformotypic peptides of ATP binding proteins for which
368 Cell 172, 358–372, January 11, 2018
ATP is exclusively an allosteric effector. In nine cases out of

10, in-extract KDs were higher than 1 mM and within the phys-

iological concentration range of ATP in vivo (Figure 7B). An

example is shown for the interaction of ATP with the regulatory

sites of the protein GTP cyclohydrolase FolE (Figure 7C). This

indicates that in-extract KDs could be used to formulate hy-

potheses on the nature of an ATP-protein interaction. Most

(83%) proteins with in-extract KD values for ATP in the 1- to

10-mM range had not been previously reported to bind ATP,

and we discovered 111 new low-affinity ATP binding proteins

that have a median in-extract KD value of 3.23 mM (Figure 7D;

Table S7). These experiments show that the structural re-

sponses measured with LiP-SMap can be used to determine

quantitative parameters of metabolite binding directly in com-

plex biological mixtures.

DISCUSSION

The process of molecular recognition between proteins and me-

tabolites is essential for life. We report here the first systematic

analysis of metabolite-protein interactions and binding sites per-

formed directly in the native cellular matrix. The analysis resulted



in a map of the bacterial metabolite-protein interactome, identi-

fied a multitude of previously known and novel binding events,

and revealed functional principles that control these interactions.

Using a combination of biochemical, metabolomics, and prote-

omics approaches, we validated novel metabolite-protein inter-

actions of allosteric and catalytic nature and interactions that

result in high-order structural changes.

Our data suggest that the interaction of FBP with PpsR

switches the direction of the glycolytic flux when the intracellular

FBP concentration changes. To our knowledge, this is one of the

first examples of allosteric regulation of a protein kinase in E. coli.

Moreover the interaction we validated between G6PDH and FBP

provides a potential mechanism to control the flux distribution

between glycolysis and pentose phosphate pathway. We also

found that citrate is a potent inhibitor of Ppc activity. Interest-

ingly, the intracellular citrate concentration is highest during

growth on alternative carbon sources, when the glyoxylate shunt

is used for anaplerosis instead of Ppc (Bennett et al., 2009). The

novel inhibitory interactionwith citratemay explain howPpc is in-

activated when an alternative anaplerotic pathway is used.

Further, we found that citrate, PEP, and GTP inhibit activity of

PfkB, a member of an important class of kinases in central car-

bon metabolism, possibly by acting as competitive inhibitors.

Moreover, we validated a novel enzyme-substrate relationship,

that of GTP with PfkB and identified the reactants and products

of the novel reaction. This reveals that PfkB is a promiscuous

enzyme that can operate in the absence of ATP.

Although protein complex assembly has been shown to be

regulated by exogenous and synthetic small molecules (e.g., ra-

pamycin, Fk506, thalidomide, and auxin) (Fischer et al., 2016),

much less is known about effects of endogenous metabolites.

Our data show that the alterations in the intracellular concentra-

tions of endogenous metabolites can have profound effects on

the assembly of protein complexes and oligomers. Large protein

assemblies form upon exposure to specific conditions that alter

the composition of the cellular metabolome (Jarosz et al., 2014;

Wallace et al., 2015). Our analysis provides a list of proteins and

metabolites that might be involved in such events, which can be

used for targeted validation experiments.

We observed ribosome dissociation in the presence of ATP.

Ribosome dissociation and recycling is known to be ATP depen-

dent in vivo in archaea (Barthelme et al., 2011). Besides, intracel-

lular ATP and Mg2+ levels are tightly regulated (Pontes et al.,

2016) and ribosomes may be destabilized due to the chelation

of Mg2+ by ATP. Other metabolites capable to chelate divalent

ions such as citrate may have similar effects on ribosome struc-

tures (Figure 6A). Evaluating the likelihood and functional impact

of potential chelation events involving metabolites will be an

interesting follow up of this study.

Based on our data, about one-quarter of the measured prote-

ome interacted with at least one of the 20 evaluated metabolites,

and metabolite-protein interactions impact all known cellular

processes, indicating that the size of the metabolite-protein in-

teractome is substantially larger than previously anticipated.

We observed, however, that metabolites tend to preferentially

bind to those proteins expressed across numerous and varied

environmental conditions, the so called ‘‘core proteome’’ (Yang

et al., 2015). Thus, a subset of transient metabolite-protein inter-
actions with these stable proteins might dictate the rapid re-

sponses of an organism to fluctuating conditions. Genes that

are subject to condition-dependent transcriptional regulation

are less likely to include MBPs, suggesting that transcriptional

control and metabolite-mediated regulation are, at least to a

certain extent, independent or even mutually exclusive.

Our approach allowed us to pinpoint putative binding sites at

peptide-level resolution, and the data suggest that one-third of

enzyme active sites interact with multiple metabolites. This is

consistent with genome-scale metabolic models suggesting

that one-third of enzymes expressed in E. coli and in organisms

from the Archaea and Eukarya domains catalyze multiple reac-

tions (Nam et al., 2012). LiP-SMap data indicate that promiscuity

is likely due to the capacity of a given binding site to interact with

multiple compounds rather than to the coexistence of multiple

binding sites on the same protein. Binding promiscuity at metab-

olite binding sitesmay reflect active sites that catalyzemultiple re-

actions or competitive inhibition of known substrates. Metabolite

binding sites that were not located at active sites (43%) could

pinpoint secondary sites of possible allosteric or catalytic nature.

Importantly, LiP-SMap does not require specific reaction

chemistries or residue conservation to identify ligand binding do-

mains (Figure S7). This will make the approach particularly useful

for the identification of allosteric sites that are generally not

conserved (Christopoulos, 2002) and are thus difficult to predict

with computational methods. The identification of allosteric sites

is in turn particularly relevant for drug discovery, since targeting

of these sites increases specificity and modulability relative to

targeting of active sites (Nussinov and Tsai, 2013).

We provide an atlas of in-extract KDs for ATP-binding proteins.

These KDs reflect physiological events more closely than KDs

measured from in vitro measurements with purified proteins.

Our approach identified proteins that can dissociate from ATP

within the physiological ATP concentration range and thus are

likely to be regulated by this metabolite in vivo (Lindsley and Rut-

ter, 2006). The same approach could be used to predict regula-

tory interactions for other metabolites.

Although powerful in detecting interactions covering a broad

range of affinities (from nanomolar to millimolar) based on known

interactions, the LiP-SMap approach is not comprehensive. Inter-

actions may be missed due to low MS sequence coverage of the

protein involved, which penalizes detection of low-abundance

MBPs. This explains why our approach did not identify all known

MBPs for the considered metabolites. LiP-SMap requires cell

lysis before analysis, which may result in dilution of the cellular

medium and loss of compartmentalization. Due to its low degree

of subcellular organization, compartmentalization effects should

be minimal for E. coli, the organism we chose to investigate. Me-

tabolites added to the cell extract could be converted to other

compounds by catalytic activities in the extract, resulting in indi-

rect effects. To minimize this issue, we removed endogenous

metabolites and cofactors from lysates by gel-filtration, thusmini-

mizing the enzymatic activity of the extract. This removed metab-

olites with a broad range of chemical properties (Figure S1F). In

principle, our approach may be biased against membrane pro-

teins since detergents were not used to ensure protein extraction

from membranes prior to LiP. Interestingly, however, 7% of all

proteins contained in our dataset (or 33% of the proteins from
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our dataset that have an annotated GO subcellular localization)

aremembrane associated. LiP-SMap could also be applied to to-

tal cell extracts containing membrane debris to increase the

coverage of membrane proteins.

In summary, LiP-SMap enabled the first systematic mapping

of protein-metabolite interactions on a proteome-wide scale

and with peptide-level resolution, thus revealing a complex

new layer of functional events. Other recently developed chemo-

proteomics or metabolomics approaches could be applied to

the discovery of novel metabolite-protein interactions. These ap-

proaches differ from LiP-SMap in that they focus on specific

types of interactions (i.e., catalytic) (Sévin et al., 2017), focus

on a smaller proteome fraction (Lomenick et al., 2009), require

chemical modification of the metabolite or are biased toward

particular compound classes (Backus et al., 2016; Niphakis

et al., 2015; Parker et al., 2017; Li et al., 2010), or lack peptide-

level resolution (Savitski et al., 2014). LiP-SMap is a chemopro-

teomic approach specifically designed for the discovery of new

ligand binding proteins and their binding sites. It does not require

any chemical modification of the ligands and is not biased to-

ward compounds with specific properties. We envision that

LiP-SMap will set the standard for future studies of protein-

ligand interactomes and will be used for drug target deconvolu-

tion, as exemplified by the experiment with cerulenin, and for the

discovery of orthosteric and allosteric drugs on a cell-wide scale.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

TCEP (tris(2-carboxyethyl)phosphine

hydrochloride)

Pierce Cat#20490; CAS#51805-45-9

Iodoacetamide Sigma-Aldrich Cat#I1149; CAS#144-48-9

Ammonium bicarbonate Sigma-Aldrich Cat#09830; CAS#1066-33-7

Formic acid 98-100% AppliChem Cat#A38580500

HEPES (4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid,

N-(2-Hydroxyethyl)piperazine-N0-(2-
ethanesulfonic acid)

Sigma-Aldrich Cat#H4034

Potassium chloride Merck Cat#K41042236-032; CAS#64-18-6

Magnesium chloride hexahydrate Fluka Cat#63072; CAS#7791-18-6

Sodium deoxycholate Sigma-Aldrich Cat#D6750; CAS #302-95-4

Phenylmethane sulfonyl fluoride AppliChem Cat#A0999-0025

DL-Dithiothreitol Sigma-Aldrich Cat#D0632; CAS#3483-12-3

Trizma-base Sigma-Aldrich Cat#T1503; CAS# 77-86-1

b-Nicotinamide adenine dinucleotide, reduced

disodium salt hydrate

Sigma-Aldrich Cat#N8129; CAS# 606-68-8 (anhydrous)

b-Nicotinamide adenine dinucleotide phosphate

hydrate

Sigma-Aldrich Cat#N5755; CAS# 53-59-8 (anhydrous)

Adenosine 50-triphosphate disodium salt Sigma-Aldrich Cat#A2383; CAS# 34369-07-8

D-Fructose 6-phosphate disodium salt hydrate Sigma-Aldrich Cat#F3627; CAS# 26177-86-6 (anhydrous)

L-(-)-Malic acid sodium salt Sigma-Aldrich Cat#M1125; CAS# 68303-40-2

L-Phenylalanine Sigma-Aldrich Cat#78020; CAS#63-91-2

Phospho(enol)pyruvic acid monopotassium salt Sigma-Aldrich Cat#860077; CAS#4265-07-0

Sodium pyruvate Sigma-Aldrich Cat#P2256; CAS# 113-24-6

L-Glutamic acid monosodium salt monohydrate Sigma-Aldrich Cat#49621; CAS#6106-04-3

Citrate monohydrate Merck Cat#K91547044 109

L-Valine Sigma-Aldrich Cat#94619; CAS#72-18-4

D-Glucose 6-phosphate disodium salt hydrate Sigma-Aldrich Cat#G-7250; CAS# 3671-99-6

a-Ketoglutaric acid Sigma-Aldrich Cat#75890; CAS#328-50-7

L-Methionine Sigma-Aldrich Cat#M9625; CAS# 63-68-3

D-Ribose 5-phosphate disodium salt dihydrate Sigma-Aldrich Cat#83875; CAS#207671-46-3

6-Phosphogluconic acid trisodium salt Sigma-Aldrich Cat#P7877; CAS# 53411-70-4

b-Nicotinamide adenine dinucleotide hydrate Sigma-Aldrich Cat#N1511; CAS# 53-84-9

b-Nicotinamide adenine dinucleotide phosphate

sodium salt hydrate

Sigma-Aldrich Cat#N0505; CAS# 698999-85-8

Guanosine 50-triphosphate sodium salt hydrate Sigma-Aldrich Cat#G8877; CAS# 36051-31-7

Adenosine 50-diphosphate sodium salt Sigma-Aldrich Cat#A2754; CAS# 20398-34-9

Guanosine 50-monophosphate disodium salt

hydrate

Sigma-Aldrich Cat#G8377; CAS# 5550-12-9

Adenosine 30,50-cyclic monophosphate sodium

salt monohydrate

Sigma-Aldrich Cat#A6885; CAS# 37839-81-9

Proteinase K (PK) from Engyodontium album Sigma Aldrich Cat#P2308

Lysyl endopeptidase Wako Pure Chemical Industries Cat#125-05061

Trypsin: sequencing-grade modified trypsin Promega Cat#V5111
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Heavy-labeled unpurified synthetic peptides ThermoFisher Scientific; This paper Table S7

HRM calibration kit Biognosys AG Cat#Ki-3003

Malate dehydrogenase from porcine heart Sigma-Aldrich Cat#M1567

Cerulenin ((2R,3S,E,E)-2,3-Epoxy-4-oxo-7,10-

dodecadienamide)

BASF SE CAS#17397-89-6

Critical Commercial Assays

BCA protein assay Pierce Cat: 23228

Deposited Data

Raw and analyzed data This paper PRIDE: PXD006543

Differential SEC-MS elution profiles upon ATP

binding of ATP binding proteins undergoing large

structural changes

This paper; and Mendeley Data https://doi.org/10.17632/nhsktkcs3d.1

Differential SEC-MS elution profiles upon ATP

binding of proteins that do not bind ATP

This paper; and Mendeley Data https://doi.org/10.17632/nhsktkcs3d.1

Concentration dependent structural response

curves relative to single conformotypic peptides

This paper; and Mendeley Data https://doi.org/10.17632/nhsktkcs3d.1

Experimental Models: Organisms/Strains

E. coli: Strain background BW25113 Baba et. al., 2006 CGSC#7636

E. coli: 6xHis-tagged G6PDH from ASKA collection Kitagawa et. al., 2005 EcoCyc: EG11221

E. coli: 6xHis-tagged Ppc from ASKA collection Kitagawa et. al., 2005 EcoCyc: EG10756

E. coli: 6xHis-tagged PpsA from ASKA collection Kitagawa et. al., 2005 EcoCyc: EG10756

E. coli: 6xHis-tagged PpsR from ASKA collection Kitagawa et. al., 2005 EcoCyc: EG11132

E. coli: 6xHis-tagged PfkB from ASKA collection Kitagawa et. al., 2005 EcoCyc: EG10700

S. cerevisiae: Strain background BY4742: S288C

isogenic yeast strain. Genotype: MATa; his3D1;

leu2D0; lys2D0; ura3D0

Euroscarf http://www.euroscarf.de/search.php?

name=Order

Software and Algorithms

Rstudio Rstudio https://www.rstudio.com

R version v. 3.3.1 The R Foundation https://www.r-project.org/

Drc package for R Christian Ritz CRAN: Drc. (https://cran.r-project.org/web/

packages/drc/index.html)

Python version v. 2.7 Python Software Foundation https://www.python.org

Seaborn library for python v. 0.71 Michael Waskom https://seaborn.pydata.org/

MATLAB v. R2014A MathWorks https://ch.mathworks.com

MacPyMol v.1.5. Schrödinger https://pymol.org/2/

GraphPad Prism v. 7.02 GraphPad Software https://www.graphpad.com/

Proteome discoverer v. 1.4 ThermoFisher Scientific https://www.thermofisher.com/us/en/home.html

Xcalibur v. 3.1 ThermoFisher Scientific https://www.thermofisher.com/us/en/home.html

Proteome discoverer v. 2.0 ThermoFisher Scientific https://www.thermofisher.com/us/en/home.html

Analyst v. 1.6.2 AB Sciex https://sciex.com/

Spectronaut v. 8.0 Biognosys AG https://biognosys.com/

Other

Freezer Mill, Sample prep 6875 SPEX n/a

Sep-Pak Vac, tC18 Cartridges Waters Cat: WAT054960

ZebaTM Spin Desalting, 7MWCO ThermoFisher Scientific Cat: 89882, 89889

His GraviTrap TALON GE Healthcare Cat: 29-0005-94

Orbitrap Q Exactive Plus mass spectrometer ThermoFisher Scientific https://www.thermofisher.com/us/en/home.html

5500 QTRAP Triple quadrupole ion trap mass

spectrometer

AB Sciex https://sciex.com/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagentsmay be directed to andwill be fulfilled by LeadContact Paola Picotti (picotti@imsb.biol.

ethz.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Escherichia coli

E. coli strain BW25113 (Baba et al., 2006) was cultivated in M9 minimal medium with 2 g/L of glucose at 37�C, 800 rpm. A single

colony picked from a fresh plate was used to inoculate Luria-Bertani (LB) complex medium. After 6 hours of incubation at 37�C
and constant shaking, LB cultures were diluted 1:100 (v/v) and used to inoculate M9-glucosemedium pre-cultures for overnight culti-

vation. Aminimum of three independent final cultures were inoculated in M9-glucose media at a starting OD600 of 0.05 and harvested

when the OD600 reached 0.8. Cells were harvested by centrifugation and carefully washed three times with ice-cold lysis buffer

(100 mM HEPES pH 7.5, 150 mM KCl, 1 mM MgCl2). Cell pellets were resuspended in lysis buffer, and cell suspensions were

extruded from a gauge needle to produce drops that were immediately flash frozen in liquid nitrogen.

Saccharomyces cerevisiae
Yeast BY4742 cells were grown at 30�C in YPD media to early log phase from a single colony picked from a fresh YPD plate. Cells

were harvested by centrifugation and carefully washed three times with ice-cold lysis buffer (100 mM HEPES pH 7.5, 150 mM KCl,

1 mM MgCl2). Cell pellets were resuspended in lysis buffer, and cell suspensions were extruded from a gauge needle to produce

drops that were immediately flash frozen in liquid nitrogen.

METHOD DETAILS

Whole-proteome preparation for MS analysis
Liquid-nitrogen frozen beads of cell suspensions in lysis buffer (100 mM HEPES pH 7.5, 150 mM KCl, 1 mM MgCl2) were

mechanically ground in cryogenic conditions with a Freezer Mill (SPEX SamplePrep 6875). Cell debris was removed by centrifugation

(5 min, 20000 g, 4�C). Endogenous metabolites and nucleic acids were removed by size-exclusion chromatography (Zeba Spin

Desalting Columns 7 MWCO, ThermoFisher Scientific). The sample preparation procedure was performed at 4�C. For proteomics

experiments, cell lysis was performed in parallel for a minimum of three biological replicates equivalent to three independent cell

cultures. In the LiP-SMap experiment with cerulenin endogenous ligands were not depleted by size-exclusion chromatography.

Protein concentration determination
Protein concentrations in whole proteome samples were determined with the bicinchoninic acid assay (Pierce BCA Protein Assay kit,

ThermoFisher Scientific).

Preparation of stock solutions of metabolites
All metabolite solutionswere prepared from ultra-pure powders in 100mMHEPES pH 7.5. After solubilization, pHwasmeasuredwith

a pH meter with micro-electrode and double-checked with pH strips. If necessary, pH was adjusted to pH 7.5 with 12.5 M NaOH.

Stock solutions were frozen at �20�C and used for the limited proteolysis or biochemical experiments within a week.

Quantification of endogenous metabolites with targeted metabolomics
Aliquots of cell extracts sampled at different time points were mixed with quenching solution (40:40:20 methanol:acetonitrile:H2O)

containing 13C internal standards. Samples were stored at �20�C, dried, and resuspended in H2O. Metabolite reactant concentra-

tions were subsequently measured by LC-MS/MS.

Limited proteolysis under native conditions for global analysis of small molecule binding events
Cell lysates from independent biological replicates were aliquoted in equivalent volumes containing 100 mg of proteome sample and

incubated for 10 min at 25�C with metabolite of interest. Proteinase K from Tritirachium album (Sigma Aldrich) was added simulta-

neously to all the proteome-metabolite samples at a proteinase K to substrate mass ratio of 1:100 and incubated at 25�C for 5 min.

Digestion reactions were stopped by heating samples for 3 min at 98�C in a thermocycler followed by addition of sodium deoxycho-

late (Sigma Aldrich) to a final concentration of 5%. Samples were then heated again at 98�C for 3 min in a thermocycler. These sam-

ples were then subjected to complete digestion in denaturing conditions as described below.

Proteome preparation in denaturing conditions
Protein fragments from the limited proteolysis step were reduced with 5mMTris(2-carboxyethyl)phosphine (ThermoFisher Scientific)

for 40 min. at 37�C and then alkylated by incubating 30 min at 25�C with 20 mM iodoacetamide (Sigma Aldrich) in the dark. Samples

were diluted with 0.1 M ammonium bicarbonate to a final concentration of 1% sodium deoxycholate, and pre-digested with lysyl
Cell 172, 358–372.e1–e12, January 11, 2018 e3
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endopeptidase (Wako Chemicals) at an enzyme substrate ratio of 1:100 for 4 h at 37�C. Digestions were completed by treatment with

sequencing-grade porcine trypsin (Promega) at an enzyme substrate ratio of 1:100 for 16 h at 37�C. Trypsin was inactivated in order

to stop peptide digestions by adding a volume of formic acid that lowered the pH to less than 2. Acidified peptide mixtures were

loaded onto Sep-Pak tC18 cartridges or into 96-well elution plates (Waters), desalted, and eluted with 50% acetonitrile-0.1% formic

acid. Samples were dried in a vacuum centrifuge, solubilized in 0.1% formic acid, and immediately analyzed by mass spectrometry.

Recombinant protein production and purification
6xHis-tagged Ppc and 6xHis-tagged G6PDH were obtained from the ASKA collection (Kitagawa et al., 2005) and purified as

described previously (Fuhrer et al., 2017). Briefly, 180 mL LB cultures containing 100 mM IPTG and 20 mg/mL chloramphenicol

were inoculated with an aliquot of an LB overnight culture diluted 1:100 and were grown at 37�C with shaking overnight. Cells

were harvested by centrifugation and then lysed by three passages through a French pressure cell at 1000 psi (Thermo Fisher Sci-

entific) in 50 mM potassium-phosphate buffer, pH 7.5 with 10 mM MgCl2, 2 mM dithiothreitol, and 4 mM phenylmethylsulfonyl fluo-

ride. Lysates were centrifuged for 30 min at 4�C (14000 g), and purified using GraviTrap TALON Co2+ columns. After immobilized

metal affinity chromatography (IMAC) purification, protein extracts were re-buffered four times with enzyme assay buffer using filter

columns with 10-kD cut-off. The enzyme assay buffers were 100 mM Tris-HCl pH 8.0 with 10 mMMgCl2 for Ppc and 50 mM potas-

sium-phosphate buffer pH 7.5 with 10 mM MgCl2 for G6PDH recombinant proteins.

6xHis-tagged PpsA and PpsR overexpression strains were obtained from the ASKA collection (Kitagawa et al., 2005) and purified

following previously reported procedures (Burnell, 2010). After IMAC purification, protein extracts were re-buffered four times with

PpsR enzyme assay buffer (50 mM Tris-HCl, pH 8, 10 mM MgCl2, 100 mM NaCl) using filter columns with 10-kD cut-off. Cell lysis,

protein purification, and re-buffering were performed in presence of 20% (v/v) glycerol to avoid protein aggregation, as described

previously (Burnell, 2010). The strain overexpressing 6xHis-tagged PfkB was obtained from the ASKA collection (Kitagawa et al.,

2005) and purified following previously reported procedures (Fuhrer et al., 2017; Sévin et al., 2017). Briefly, cells were pelleted by

centrifugation (10 min at 4000 g), resuspended, and lysed in 20 mL of B-PER Reagent (Thermo Scientific) with 1 mM dithiothreitol,

DNase I, and lysozyme at room temperature. Debris-free cell lysates were complemented with 20 mM imidazole, loaded onto His

GraviTrap Talon columns (1 mL column volume, GE Healthcare), and washed with 10 column volumes of washing buffer (20 mM so-

dium phosphate, 500 mM NaCl, 20 mM imidazole, pH 7.5). Pure protein was eluted with 20 mM sodium phosphate, 500 mM NaCl,

500 mM imidazole, pH 7.5. Buffer was exchanged to 100 mM HEPES, 1 mM MgCl2, pH 7.5 by three ultrafiltration steps using spin

columns with 10-kDa molecular weight cut-off (Millipore), and samples were stored at 4�C.

Spectrophotometric assay for Ppc activity
In vitro activity of 6xHis-tagged purified Ppc was quantified photometrically as previously described (Morikawa et al., 1980). Briefly,

Ppc activity was measured as decrease in absorbance at 340 nm due to depletion of NADH in an assay coupling Ppc and malate

dehydrogenase: PEP was converted to oxaloacetate by Ppc, and oxaloacetate in turn was consumed by malate dehydrogenase us-

ing NADH as a co-factor. Thus, consumption of NADH was stoichiometrically coupled to the formation of oxaloacetate catalyzed by

Ppc. Assays were performed in 96-well format in 200 mL reaction volume at 29�C in 100 mM Tris-HCl, pH 8.0; 10 mMMgCl2, 10 mM

NaHCO3, 0.2 mM NADH, 1 U malate dehydrogenase. Reagent mixtures were freshly prepared in assay buffer (100 mM Tris-HCl, pH

8.0, 10 mM MgCl2) prior to each experiment to minimize enzyme inactivation. Reactions were initiated by substrate addition, and

depletion of NADH was monitored photometrically at 340 nm every 10 s for 30 min. Ppc activity reported in Figure 4B was measured

as the variation in absorbance at 340 nm due to changes in NADH concentration normalized to the maximum activity observed. Re-

action rates were determined after curve fitting of time course measurements by linear regression. Malate dehydrogenase activity

was not affected by citrate (data not shown). The pH of metabolite stock solutions was adjusted to pH 8 for this assay.

Spectrophotometric assay for G6PDH activity
In vitro activity of 6xHis-tagged purified G6PDH was quantified photometrically by measuring the formation of NADPH at 340 nm.

Assays were performed in 96-well format in 200 mL reaction volume at 29�C in 100 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1 mM

NADP+, 0.2 mg/mL G6PDH and 2 mM G6P unless stated otherwise. Recombinant enzyme samples were freshly prepared in

100 mM Tris-HCl pH 7.5, 10 mM MgCl2 prior to each experiment to minimize inactivation of the enzyme. Reactions were initialized

by G6P addition, and formation of NADPH was monitored photometrically every 10 s for 180 s. G6PDH activity reported in Figure 4C

was measured as an increase in absorbance at 340 nm due to formation of NADPH normalized to the maximum activity observed.

Reaction rates were fitted from time course measurements by linear regression.

Spectrophotometric assay for PpsA-PpsR activity
In vitro 6xHis-tagged purified PpsA enzyme activity was assayed photometrically at 340 nm in 96-well plates using a continuous

coupling assay with PEP carboxylase and malate dehydrogenase, as previously described (Burnell, 2010). Briefly, PEP formed by

PpsA was first converted to oxaloacetate by PEP carboxylase, and oxaloacetate in turn was consumed by malate dehydrogenase

using NADH as a co-factor. Consequently, consumption of NADHwas stoichiometrically coupled to the formation of PEP. Reactions

were conducted in a 200 mL reaction volume at 29�C in 50 mM Tris-HCl, pH 8; 10 mMMgCl2 ; 0.2 mM NADH; 1 mM ATP; 1 mM py-

ruvate; 1 U PEP carboxylase; 1 U malate dehydrogenase; 10 mM NaHCO3; 1 mM G6P.
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The Pi-dependent activation of PpsA by PpsR was quantified as follows: first PpsA was completely inactivated under the following

inactivation assay conditions: 50 mM Tris-HCl, pH 8, 10 mM MgCl2, 0.1 mM ATP, 2 mM ADP, approximately 5:1 ratio of PpsA and

PpsR and incubation for 20 min at room temperature. Any remaining ADP or ATP was removed by size-exclusion chromatography

(Zeba Spin Desalting Columns 7 MWCO, ThermoFisher Scientific), and then PpsA was re-activated by adding Pi. Samples of this

activation assay were taken and tested for PpsA activity as described above. PpsA activity reported in Figure 4D was measured

as the variation in absorbance at 340 nm due to changes in NADH concentration normalized to the maximum activity observed.

Within 10 min from the initiation of the reaction approximately 80% of PpsA activity was restored.

Mass spectrometry-based PfkB activity assays
Purified PfkB was incubated at 37�C at a protein concentration of 50 mg/mL in 200 mL buffer containing 100mMHEPES pH 7.5, 1mM

MgCl2, 2.5 mM of each substrate, and 5 mM predicted effector. At indicated time points, a 10 mL aliquot of the reaction solution was

transferred to 140 mL methanol:water (6:1 v/v) pre-cooled on dry ice to quench the reaction by inducing enzyme denaturation. Reac-

tant concentrations were subsequently measured by time-of-flight mass spectrometry. Each experiment was repeated with at least

two independent enzyme purifications in experimental triplicates. Negatively charged ions were tentatively annotated based on ac-

curate mass using 0.001 Da tolerance assuming simple deprotonation ([M-H]-).

Size exclusion chromatography (SEC) of cell extracts
Aliquots of fresh, concentrated lysates incubated with a metabolite of interest or vehicle were separated with a Superdex S200

10/300 GL size exclusion column on an AEKTA pure system (GE Healthcare) running at 0.5 mL/min in 100 mM HEPES, 150 mM

KCl2, and 1 mM MgCl2 pH 7.5 (Vehicle experiment); 100 mM HEPES, 150 mM KCl2, 1 mM MgCl2 and 10 mM ATP pH 7.5 (ATP

SEC experiment). Fractions of 500 mL were collected and denatured in 6 M urea, treated with 5 mM TCEP 35 min at 37�C, and alky-

lated in 20mM iodoacetamide for 30min at room temperature in the dark. Samples were then digestedwith LysC 1:100 (w/w) at 37�C
for 4 hours and then with trypsin 1:100 (w/w) at 37�C for 16 hours after diluting the urea concentration to 2 M with 0.1 M ammonium

bicarbonate.

Instrumentation and MS data acquisition for LiP-SMap
LC

Peptide samples were analyzed on an Orbitrap Q Exactive Plus mass spectrometer (Thermo Fisher Scientific) equipped with a nano-

electrospray ion source and a nano-flow LC system (Easy-nLC 1000, Thermo Fisher Scientific). Peptides were separated on a 40 cm

x 0.75 mm i.d. column (NewObjective, PF360-75-10-N-5) packed in house with 1.9 um C18 beads (Dr. Maisch Reprosil-Pur 120). For

LC fractionation, buffer A was 0.1% formic acid and buffer B was 0.1% formic acid in 100% acetonitrile and the following gradient

was employed: linear from 5% to 25% buffer B over 100 min, linear from 25% to 40% buffer B over 10 min, linear from 40% to 90%

buffer B over 5min and isocratic with buffer B concentration fixed at 90% for 5min. The flow rate was 300 nL/min and the columnwas

heated to 50�C.
Peptide samples produced from SEC fractions were analyzed on an Orbitrap Fusion Trihybrid mass spectrometer (Thermo Fisher

Scientific). Peptides were separated on a 15 cm x 5 mm i.d. column packed in house with 1.9 mmC18 beads (Dr. Maisch Reprosil-Pur

C18-AQ) with the same settings as those described in the previous paragraph. The flow rate was 200 nL/min and the column was

heated to 50�C.
Data-dependent acquisition

For shotgun LC-MS/MS data dependent acquisition (DDA), 1 mL peptide digests from each biological replicate were injected inde-

pendently at a concentration of 1 mg/mL. MS1 spectra were acquired from 350 to 1500 m/z at a resolution of 70000. The 20 most

intense precursors that exceeded 1300 ion counts were selected for fragmentation at 25 eV normalized collision energy and the cor-

responding MS2 spectra were acquired at a resolution of 17500 using maximally 100000 ions, collected for maximally 55 ms. All

multiply charged ions were used to trigger MS-MS scans followed by a dynamic exclusion for 30 s. Singly charged precursor ions

and ions of undefinable charged states were excluded from fragmentation.

Data-independent acquisition

Peptide digests (1 mL aliquots) from each biological replicate were injected independently at a concentration of 1 mg/mL andmeasured

in data-independent acquisition (DIA) mode on an Orbitrap QExactive Plus mass spectrometer (Thermo Fisher Scientific) using

DIA settings. The DIA-MS method consisted of a survey MS1 scan from 350 to 1500 m/z at a resolution of 70000 with AGC target

of 3 3 106 or 120 ms injection time followed by the acquisition of DIA isolation windows. Twenty variable-width windows were opti-

mized based on previous shotgun measurements of similar samples to equally distribute the number of precursor ions over the DIA

isolation windows. The DIA isolation setup included a 1m/z overlap between windows. The m/z isolation ranges applied on each DIA

configuration are listed in Table S7. DIA-MS2 spectra were acquired at a resolution of 35000 with a fixed first mass of 150m/z and an

AGC target of 13 106. To mimic DDA fragmentation, normalized collision energy was 25 eV calculated based on the doubly charged

centerm/z of the DIAwindow.Maximum injection timeswere automatically chosen tomaximize parallelization resulting in a total duty

cycle of approximately 3 s.
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Peptide identification and spectral library generation

The collected DDA spectra were searched against the E. coli (strain K12) Uniprot fasta database (version June 2015) using the Sor-

cerer-SEQUEST� database search engine (Thermo Electron). We allowed up to twomissed cleavages, excluded cleavage of KP and

RP peptide bonds and applied a semi-specific tryptic digestion rule type. Cysteine carboxyamidomethylation (+57.0214 Da) and

methionine oxidation (+15.99492) were allowed as fixed and variable modifications, respectively. Monoisotopic peptide tolerance

was set to 10 ppm, and fragment mass tolerance was set to 0.02 Da. The identified proteins were filtered using the high peptide con-

fidence setting in Protein Discoverer (version 1.4, Thermo Fisher Scientific), which correspond to a filter for 1% FDR on peptide level.

For generation of spectral libraries the DDA spectra were analyzedwith ProteomeDiscoverer 1.4 as described above and imported

to the prepare perspective tool of the software Spectronaut version 8 (Biognosys AG). The spectral libraries were obtained from at

least three LC-MS/MS replicates per conditions and contained normalized retention time iRT values for all peptides.

DIA-MS targeted data extraction

Targeted data extraction of DIA-MS acquisitions was performed with Spectronaut version 8 (Biognosys AG) with default settings.

Retention time prediction typewas set to dynamic iRTwith correction factor 1 for determination of XIC extractionwindows. Retention

time correction was performedwith a non-linear calibration strategy, and interference correction onMS2 level was enabled. The false

discovery rate (FDR) was estimated with mProphet and set to 1% at peptide precursor level.

Peptide quantification

Both fully and semi tryptic peptides were used for quantification purposes, considering only peptides that were uniquely present in

the sequence of one protein of the database. For details regarding DDA-MS and DIA-MS quantification pipelines see section ‘Quan-

tification and statistical analysis’.

Selected reaction monitoring (SRM) measurements

Shotgun proteomic data were used to select up to five intense singly charged fragment ions of the y-series from doubly or triply

charged precursor ions to perform selected reactionmonitoring (SRM) analysis. This set of transitions was then experimentally tested

in SRM mode. Matching of retention times and relative fragment ion intensities observed in SRM and shotgun experiments was

confirmed after realignment of the gradients used. Transitions associated with obvious interference based on visual inspection using

the analysis software Skyline (version 3.6 MacCoss Lab Software) were discarded. In the same experiment, exact peptide retention

times from the LC-SRMplatformwere annotated in order to perform scheduled SRMacquisition using a 360 s retention timewindow.

All SRM analyses were performed on a triple quadrupole/ion trap mass spectrometer (5500 QTrap, ABSciex) equipped with a nano-

electrospray ion source and operated in SRM mode. Peptides were separated using an on-line Eksigent 1D-plus Nano liquid chro-

matography system (Eksigent/ABSciex), equipped with an 18-cm fused silica column with 75-mm inner diameter (New Objective).

Columns were packed in-house using Magic C18 AQ 5-mm beads (Michrom Bioresources). A cooled (4�C), autosampler (Eksi-

gent/ABSciex) was used to load the dissolved peptides (�10 mg), and then 1 mg of the peptide mixture was loaded and separated

using a linear gradient from 5 to 35% acetonitrile in water over 30 min. Q1 and Q3 were operated at unit resolution (0.7 m/z half

maximum peak width) with a dwell time of at least 50 ms and a cycle time of less than 2 s measuring approximately 200 transitions

per run.

Collision energies (CE) were calculated according to the formulas: CE = 0.044 $ m/z + 5.5 for doubly charged precursor ions or

CE = 0.055 $m/z + 0.55 for triply charged precursor ions. We confirmed co-elution and peak shape similarity of the transitions moni-

tored for a given peptide and used the respective areas under the curve for quantification. Outlier SRM transitions (e.g., noisy or

shouldered transition traces from potentially similar peptides in Q1/Q3 of the background proteome) were not considered in the final

calculations.

Peptide identification and quantification of fractionated cell lysates after size-exclusion chromatography
Peptide identifications were performed essentially as described in the ‘Peptide identification and spectral library generation’ section,

with the exception that a tryptic digestion rule type was applied. The number of peptides observed in each fraction (counted as spec-

tral counts) was integrated to quantify the amount of protein present in each fraction in conditions with and without metabolite. The

total protein amounts loaded on the SEC column were assumed to be identical since aliquots of the same lysates were used in each

condition. SEC chromatograms obtained bymonitoring UV absorbance at 280 nm support this assumption. The area under the curve

relative to precursor ions (measured with MS1 scans) was also applied as protein quantification method using the Precursor ion area

detector node of Proteome Discoverer 2.0 obtaining equivalent results. In both cases the spectral counts profiles (or the equivalent

sum of precursor ion intensities) were normalized to themaximum limit of 1 for the representation of the data relative to the chromato-

grams of single fractionated proteins. We defined a ‘shift’ in the protein elution volumewhen a change in the protein elution volume of

at least two fractions could be observed in presence versus absence of metabolite.

QUANTIFICATION AND STATISTICAL ANALYSIS

Peptide quantification in the LiP-SMap workflow
A standard workflow in MS design and assay development usually includes a discovery phase followed by a validation phase with

targeted proteomics. In the first version of the limited proteolysis combined with mass spectrometry (LiP-MS) protocol a MS label-

free shotgun approach based on spectral counts was used to identify and quantify peptides that change in abundance when
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comparing conditions. Candidates from shotgun runs were then further validated with Selected Reaction Monitoring (SRM) based

targeted proteomics that allowed relative quantification of peptide with better precision and sensitivity than shotgun MS. The

SRM approach typically requires several rounds of refinement of the methods, which could be tedious, since they require manual

revision of the transition lists and of the MS peaks after data acquisition.

Within the LiP-SMap pipeline the MS data analysis pipeline has been further developed and automated as described below to

exclude manual intervention and increase confidence without substantial increase in instrument time albeit reducing data anal-

ysis time.

Step 1: MS1-based quantification

In this MS workflow we first compare and quantify MS1 peptide ion maps from DDA-MS runs of the limited proteolysis treated sam-

ples in three different conditions (typically, two different concentrations of a metabolite and a control sample with vehicle only) using

the alignment software Progenesis 2.0 (Nonlinear Systems). The investigation aims at identifying conformotypic peptides that signif-

icantly change their abundance across the different metabolite concentration points. Results acquired from at least three biological

replicates are statistically tested for differential conformotypic peptide abundances between conditions applying a fold change cut-

off of 2 and a q-value-cut-off of 0.01. Empirical Bayes moderated t tests are applied, as implemented in the R/Bioconductor limma

package. The resulting per peptide condition comparisons p values are subsequently adjusted for multiple testing using the Benja-

mini-Hochberg method. Peptide abundances statistics are obtained by grouping different precursor ions of the same peptide

sequences.

MS raw data files from DDA analysis are also used for the spectral library construction for DIA-MS analysis described in step 2.

Step 2: MS2-based quantification

The method then compares time-resolved MS/MS maps measured with the DIA-MS method (Gillet et al., 2012) of the limited prote-

olysis treated samples in the same three different conditions (see Step 1) using the software Spectronaut version 8 (Biognosys AG).

The DIA method allows the identification and quantification of several thousands of proteins in complex samples, yet maintaining

high reproducibility, quantification consistency, broad dynamic range and precision similar to that of SRM,whichmakes it intrinsically

a targeted proteomics method and the subsequent validation stage with SRM assays redundant.

The DIA analysis approach implemented in Spectronaut relies on spectral libraries to assign co-eluting fragment ion traces to pep-

tide precursors and quantify peak intensities. To maximize the confidence of precursor ion identification, the assay libraries used in

the LiP-SMap screen are constructed with experiment-specific MS/MS spectra acquired by previously measuring the same peptide

samples in DDA mode.

Precursor peptides quantified from at least three biological replicates measured by DIA-MS were statistically tested for differential

(conformotypic) peptide abundance between conditions using MSstats based on a linear mixed-effects model (http://msstats.org/).

For each metabolite concentration comparison, MS stats provides model-based estimates of fold changes as well as p values that

are adjusted for multiple testing using the Benjamini-Hochberg method to control the FDR at the cut-off level of 0.05. Peptide abun-

dance statistics are obtained by grouping different fragment ions that co-elute and are assigned to the same parental precursor. Pep-

tides that present a differential peptide abundance among conditions with a fold change of at least 1.5 are considered for the next

step of filtering for the identification of conformotypic peptides.

Step 3: Final candidates

The final conformotypic peptides candidates corresponding to differentially abundant peptides between metabolite treated and not

treated samples are selected among those that pass the established cut-off thresholds (see above) with both the DIA-MS and DDA-

MS quantification workflows. This is done to increase the confidence in the identification of conformotypic peptides and minimize

false positives.

DIA analyses result in permanent digital records of the content of a sample that can be browsed in a targeted manner for multiple

queries. In our pipeline, the DIA maps we produced were browsed for the targeted validation of hits from the shotgun-MS screens.

However, they can be freely interrogated for the analysis of any peptide of interest in the future.

Step 4: Evaluation of metabolite induced changes in PK activity and endogenous proteolytic activity of cell extracts

We evaluated the possibility that changes in proteolytic patterns measured with LiP-SMap were due to a change in the activity of

proteinase K (PK) induced by the addition of metabolites. If it was the case, global changes in proteolytic patterns should be detected

on a proteome-wide scale. However, this was not the case for any of the metabolites assayed in this work. We first evaluated the

activity of PK in the presence or in the absence of the promiscuous metabolite GTP using a mixture of 39 synthetic peptides (Thermo

Scientific) listed in Table S7. Those peptides possess a broad range of propensities to PK cleavage, and are not supposed to acquire

structure in aqueous solution; therefore, the extent of PK cleavage should exclusively depend on environmental conditions. The only

difference between the experimental conditions we chose is the presence or absence of GTP.

The abundance of the 39 peptides after PK and trypsin digestion and after trypsin digestion onlywas quantified by SRM-MS using a

targeted scheduled method that selectively measured the peptide transitions listed in Table S7. All measurements were evaluated in

an experiment with three biological replicates (independent digestions). Overall, there was no significant difference in PK activities

measured in presence or in absence of GTP, since the small intensity fluctuations observed for the abundances of the 39 peptides are

in the range of the typical error of label-free proteomics experiments (Figure S7A). All other 19 metabolites tested with LiP-SMap did

not affect significantly PK activity (Figure S7B). Based on these results, we conclude that metabolite-induced changes in PK activity

are negligible in the experimental conditions used in the LiP-SMap screen.
Cell 172, 358–372.e1–e12, January 11, 2018 e7

http://msstats.org/


We also tested whether the presence or absence of themetabolites screened by LiP-SMap influenced the endogenous proteolytic

activity of the cell lysates.We processed aliquots of the same proteome extracts processed through the LiP-SMap pipeline, but omit-

ting the limited proteolysis step. Under such conditions, differences in proteolytic patterns should reflect the differential activity of

endogenous-proteases or other enzymes (e.g., kinases and phosphatases targeting specific proteins in the lysate). Trypsin digestion

was performed on three biological replicates of native E. coli lysates, and the resulting peptide mixtures were analyzed with the LiP-

SMap data analysis pipeline. No tryptic peptides significantly (p value < 0.01) changed abundance in the presence of ATP, PEP or

G6P relative to a control with no added metabolite and only two peptides changed abundance in the presence of FBP at the highest

concentrations screened in the LiP-SMap assay (Figure S7C). Based on our 1% false discovery rate, as also commonly employed in

proteomics experiments, these peptides are likely to be false positives. Comparable results were obtained with the other sixteenme-

tabolites (data not shown). Thus, addition of each of the 20 metabolites does not significantly influence the activity of endogenous

proteases in the cell lysates.

Known protein-metabolite interactions
A manually curated list of E.coli proteins previously reported to bind to chemical compounds in the 20 metabolite set used in this

study was created by mining literature and publicly accessible databases. The research for protein-reactant and allosteric interac-

tions was automated with a MATLAB script that sought for protein-natural compound interactions from the E. coli genome scale

metabolic model described by Orth et al. (Orth et al., 2011) and from the Ecocyc database (Keseler et al., 2013). The resulting list

was further expanded to cover all non-metabolic enzymatic reactions not explicitly included in the E. coli genome-scale model.

For instance, all protein kinases with E.C. number 2.7.1.x or 2.7.10.x, all ligases that bind ATP, and all protein IDs classified as

‘ATP-binding’ (KW-0067) or ‘GTP-binding’ (KW 0342) in the Uniprot database were manually added to the list. Final curation was

completed by manually checking that the automatic annotation truly recovered the right protein IDs.

Quality assessment of LiP-SMap results
In order to assess the quality of our results, we treated LiP-SMap as a classification method. To evaluate the quality of a classification

method, one must first identify true and false positive and true and false negative hits (in this case, interactions) generated by the

approach. The BRENDA repository (http://www.brenda-enzymes.org/) was mined to identify interactions across species, as a

source of known interactions. Uniprot unique protein identifiers were mapped with Enzyme Commission (EC) numbers, which func-

tionally classify enzyme according to catalyzed reactions. We considered the space of interactions that could be identified by LiP-

SMap as all potential interactions between the 510 E. coli enzymes and our 20metabolites, excluding 483 enzyme-substrate relation-

ships. Thus, 5103 20 – 483 = 9717 potential enzyme-metabolite interactions were considered overall. Among those, 157were known

enzyme-metabolite interactions supported by experimental evidence specific for E. coli in BRENDA. In addition, we included 427

enzyme-metabolite interactions that were reported to exist in other species, and used their Enzyme Commission (EC) numbers to

match enzymes to E. coli proteins. This approach was recently used to reconstruct the small-molecule regulatory network in

E. coli (Reznik et al., 2017). Of these additional known interactions, 144 were detected in other bacteria and 283 were only detected

in Archaea or eukaryotes. We then restricted our LiP-SMap dataset to those interactions that involved one of the 510 enzymes in

E. coli and excluded known enzyme-substrate relationships resulting in 592 interactions. We considered true and false positives

the subsets of these interactions that were and were not known, respectively, based on the above described criteria. True and false

negatives were the subsets of all potential interactions that were not and were detected by LiP-SMap, respectively. Based on

this approach, we estimated the false discovery rate (FDR) from the number of false positives using the formula: number of false pos-

itives / (number of true negatives + number of false positives).

In order to further assess the quality of our results, we evaluated the confidence in a certain interaction in two ways: first, based on

the number of studies providing experimental evidence for the interaction (Figure S2E) and, second, based on the number of species

in which the interaction was detected, assuming that the closer the species are to E. coli, the more likely the interaction is to occur in

E. coli (Figure S2F). Based on both criteria, the fraction of interactions recovered by LiP-SMap increased with an increase in the con-

fidence in that interaction, thus supporting the quality of data generated by LiP-SMap.

Score system for assessment of LiP-SMap results
Our scoring system prioritized interactions: i) that were detected at both metabolite concentrations; ii) that were detected with pep-

tide fold changes larger than 4 fold; iii) that were detected via multiple conformotypic peptides from the same protein; iv) for which a

metabolite resided in a pathway containing one or more genes sharing a genetic interaction with the protein, since a fraction of ge-

netic networks are known to coincide with physical interaction networks (Gallego et al., 2010); and v) that had been previously re-

ported in other organisms or for which metabolite and protein had been previously associated by other types of literature evidence.

Genetic interactions analysis
To link MBPs to previously reported genetic interaction data, we retrieved curated physical and genetic interactions for E. coli (strain

K12 / W3110) from the currently released BioGRID database (version 3.4.153, September 25th, 2017). Metabolite-associated genes

were extracted from the E. coli metabolic network described by Orth and collaborators (Orth et al., 2011), deposited in the BiGG

Models database (model id: iJ01366) and accounting for 2251 metabolic reactions, 1366 genes and 1136 metabolites.
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Metabolite binding protein analysis
For all metabolites screened in the LiP-SMap screen except GTP, the hits found at the highest concentration were used for the global

analysis of metabolite-mediated proteome regulation (data reported in Figures 2, 3B, 4A, and S1–S3). Metabolite binding proteins

(MBPs) identified at the high concentration included most hits detected at the low concentration. Concentrations used in the LiP-

SMap screen are specified in Table S1.

Volcano plots of candidate MBPs
For the data presented in Figure 2A, the threshold levels of significance necessary to assign conformotypic peptides indicative of a

structural rearrangement associated with metabolite binding were: relative fold change between the metabolite exposed and free

condition > 2 and q-value < 0.01 of LiP-SMap assays performed with at least three biological replicates. Each point in the plots cor-

responds to the relative fold change measured between samples with and without metabolite for the peptide with minimal q-value

among all peptides quantified for a certain protein. Thus one protein is represented with a single dot in the graph. A protein was

defined as an MBP if it had at least one conformotypic peptide in the corresponding LiP-SMap experiment.

Boxplots
In boxplots, horizontal lines define themedian and boxes the 25th (Q1) and 75th (Q3) percentiles. The upper whisker is the lower of the

maximum observed value and the third quartile plus the interquartile range multiplied by 1.5. The lower whisker is the higher of the

minimal observed value and the first quartile minus the interquartile range multiplied by 1.5.

Receiver operating characteristic (ROC) curve
All protein-metabolite interactions were assigned the minimal q-value calculated for each protein-metabolite pair when measuring

differential peptide abundances by LiP-SMap. All 9717 pairs were rated by subtracting this value to 1.

Evaluation of structural chemical similarity of metabolites
Chemical structure similarity searches were performed using the advanced searches option in the Chemical Entities of Biological

Interest database (ChEBI). Each query metabolite was matched to the collection of PDB ligands available in the PDBdb. OrChem

was used in combination with the JChemPaint applet included in the Chemistry Development Kit (CDK) (https://jchempaint.

github.io/) to convert chemical structures into molecular fingerprints. Similarity searches were performed by calculating an intramo-

lecular similarity coefficient (Jaccard-Tanimoto) for each structure within the database against the query compound structure. The

Jaccard-Tanimoto similarity score (S) was defined as:

S=
Nsub

Na+Nb� Nsub
where N was the number of atoms in the maximum common
sub substructure, Na the number of atoms of molecule ‘a’ and Nb the

number of atoms of molecule ‘b’.

Exact matches were given a Tanimoto score of 1, and all random graph matching score were equal to less than 0.5. The Jaccard-

Tanimoto coefficient is a measure of how many structural features two chemical structures have in common based on the chosen

fingerprint. For this work fingerprints were calculated on a chemical structure path depth of eight. A cut-off of 0.9 was used to ensure

selection of significant biologically relevant matches, as, for instance, the correct ligand of an enzyme and its non-cleavable analog.

Such non-cognate ligands are often employed in structural and pharmacological studies to aid crystallization, and we wished to

recover those cases.

Structures of protein-metabolite holocomplexes
All experimentally determined structures of E. coli protein-metabolite holocomplexes were retrieved from the PDB Ligand Expo re-

pository. All structural models containing biologically relevant small molecules analogs with Tanimoto similarity score > 0.9 were

considered.

We then expanded this array of E. coli structures and searched for homologous structures of protein-metabolite holocomplexes.

All PDB entries containing any of the compounds screened or their structural analogs with Tanimoto similarity score > 0.9 were

retrieved using the protein-ligand holocomplexes database from PDBsum (https://www.ebi.ac.uk/thornton-srv/databases/

pdbsum). The biological assembly coordinates were then downloaded from the PDB database. When necessary, ChEBI IDs of

the metabolite structural analogs were converted to three-letter PDB codes. Protein sequences in FASTA format were then gener-

ated from the ATOM coordinates of the selected PDB chains and aligned against the E. coli proteome. To this end BLAST databases

were constructed from the E. coli proteome deposited in the UniProt database. E. coli proteins having a sequence identity R 40%

and an E-value > 0.001 were identified as homologous proteins for the selected PDB chains and considered as valid structural

models for the investigated protein-small molecule holocomplexes.
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Measurements of Euclidean distances
To determine whether the conformotypic peptides found in LiP-SMap experiments were informative for pinpointing metabolite bind-

ing sites, all MS detected peptides were mapped on the homologous PDB chains using the BLAST output described in the previous

paragraph. All Euclidean distances in angstroms (Å) between peptide atoms and chemical compound atoms included in the PDB files

were calculated with custom-made PyMOL-Python scripts and PERL scripts. The minimum distance found between the MS-de-

tected peptide and the investigated metabolite was reported as the representative distance value for each small molecule-peptide

pair.

For the structural models described in Figures 3C–3Ewe considered themedian value ofminimal Euclidean distances expressed in

Å between metabolites and the conformotypic peptides detected by LiP-SMap for all holocomplexes containing the 20 metabolites

screened or their structural analogs with Tanimoto similarity score > 0.9. The average number of amino acid residues was 11 for half-

tryptic and 13 for fully tryptic peptides.

Secondary structure prediction analysis
To define the secondary structure of the identified peptides we first built a dataset of secondary structure predictions of the entire

E. coli (K12) proteome using the Protein Secondary Structure Prediction Server, Jpred 4 (Jpred RESTful API, version 1.5). Next,

we mapped the peptides to the protein sequence dataset and retrieved the corresponding secondary structure.

Analysis of the E. coli reactome
We created amatrix of 850metabolites and 1367 E. coli enzymes based on all characterized enzymatic reactions as described in the

genome-scale models with protein structures (GEM-PRO) for E. coli (Brunk et al., 2016). This provided a referencemap, here referred

to as the E. coli reactome, containing all experimentally determined structures of enzyme-substrate and enzyme-product complexes.

This information allowed us to establish an operational definition of the boundaries of active sites, based on all experimentally avail-

able structural models of E. coli enzymes bound to their natural reactants. First, minimal Euclidean distances were measured be-

tween amino acid residues of conformotypic peptides (n = 151) or MS detected peptides (n = 6937) and substrates or products

of the metabolic reaction catalyzed by the proteins. The difference between the medians of the distances in the conformotypic

peptide and MS-detected peptide groups was statistically significant (Figure 5A). Therefore we used the 50th percentile (median)

of the distribution of this group of conformotypic peptides (equivalent to 6.44 Å) as the representative radius of the active site volume

(Figure 5B). The active site boundaries were therefore defined as the volume of a sphere of radius equal to 6.44 Å.

All candidate binding sites identified by the position of conformotypic peptides with a distance shorter than or equal to 6.44 Å from

the active site center were considered as candidate cases for substrate ambiguity or competitive inhibition. When the measured dis-

tance was larger than 11.66 Å (a distance equivalent to the third quartile of the distribution of conformotypic peptides), we assumed

binding of the metabolite to a secondary site. All intermediate cases with minimal Euclidean distances between 6.44 Å and 11.66 Å

were not classified.

To estimate the error associated with the operational definition of active site boundaries we used a non-parametric bootstrap

approach. We defined a null distribution generating 10000 bootstrap resamples with replacement of the original dataset and for

each of the bootstrap samples we estimated themedian. Next, we defined the error associated with active site boundary estimations

as the standard deviation of the distribution of active site boundaries (median) across the bootstrap samples. The error calculated

was 0.55 Å as discussed in the main text.

Proteins undergoing extensive structural changes
Assignments of half-tryptic (HT) and fully tryptic (FT) peptides were performed with a custom made R script that maps peptides to

proteins. Only peptides unambiguously associated with a protein sequence (proteotypic peptides) were considered for the analysis.

Fully tryptic (FT) peptides are those originating from two tryptic cleavages at both the N and C termini of the peptide. Half tryptic (HT)

cleavages are generated from one sequence unrestricted cleavage and a second tryptic cleavage at the N or the C terminus of the

peptide. The mapping of LiP clusters of HT and FT peptides and graphical representations (as in Figure S6) were achieved with a

custom made Python script.

Proteins undergoing extreme structural changes were defined as those for which at least 80% of all FT peptides had a change in

the same direction (equivalent to the log2 abundance ratio between the condition in presence or in the absence of the metabolite), or

at least 80% of all HT peptides had a change in the same direction (equivalent to the log2 abundance ratio between the condition in

presence or in the absence of the metabolite). This was quantified with a fully tryptic or half-tryptic extremity score:

Extremity score FT =

PN

i = 1

sgnðlog2 differential abundance FT peptideð ÞÞ
N

where differential abundance FT peptide is the ratio of the median
 intensity of a fully tryptic peptide imeasured in presence of a fixed

concentration of a metabolite and the median intensity of the fully tryptic peptide imeasured without metabolite, sgn is the sign func-

tion of log2(differential abundance FT peptide) and N is the total number of fully tryptic peptides per protein.
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Extremity score HT =

PN

i = 1

sgnðlog2 differential abundance HT peptideð ÞÞ
N

where differential abundance HT peptide is the ratio of the median
 intensity of a half-tryptic peptide imeasured in presence of a fixed

concentration of a metabolite and the median intensity of the half-tryptic peptide imeasured without metabolite, sgn is the sign func-

tion of log2(differential abundance HT peptide) and N is the total number of half-tryptic peptides per protein.

Protein candidates with an extremity score FT or an extremity score HT higher than 0.8 or lower than �0.8 were further filtered to

select those with at least five conformotypic peptides (full or half-tryptic) and a protein sequence coverage of 20%.

Protein hetero-complexes considered for this analysis included assemblies of more than two protein IDs where at least two

different MBPs were found with the same metabolite LiP-MS experiment. The list of all manually curated E. coli (K-12 substr.

MG1655) protein complexes from EcoCyc (1075 entries, latest updated of August 2016) was used as a reference. Protein complexes

undergoing extreme structural changes were selected among those that presented at least 80% of all FT peptides assigned to the

complex with a change in the same direction (equivalent to the log2 abundance ratio between the condition in presence or in the

absence of themetabolite) or at least 80% of all HT peptides assigned to the complex with a change in the same direction (equivalent

to the log2 abundance ratio between the condition in presence or in the absence of the metabolite). This was quantified with a fully

tryptic or half-tryptic protein community score:

Community score FT =

PN

i = 1

sgnðlog2 differential abundance FT peptideð ÞÞ
N

where differential abundance FT peptide is the ratio of the median
 intensity of a fully tryptic peptide imeasured in presence of a fixed

concentration of a metabolite and the median intensity of the fully tryptic peptide imeasured without metabolite for a protein hetero-

complex, sgn is the sign function of log2(differential abundance FT peptide) and N is the total number of fully tryptic peptides of a

protein hetero-complex.

Community score HT =

PN

i = 1

sgnðlog2 differential abundance HT peptideð ÞÞ
N

where differential abundance HT peptide is the ratio of the median
 intensity of a half tryptic peptide imeasured in presence of a fixed

concentration of a metabolite and the median intensity of the half tryptic peptide imeasured without metabolite for a protein hetero-

complex, sgn is the sign function of log2(differential abundance HT peptide) and N is the total number of half-tryptic peptides of a

protein hetero-complex.

Metabolite-induced changes in protease resistance
Candidates for MBPs that become protease resistant upon metabolite binding were selected from those with ‘extremity score FT’R

0.8 or an ‘extremity score HT’%�0.8. Candidates for MBPs that become protease sensitive upon metabolite binding were selected

from those that had an ‘extremity score HT’ R 0.8 or an ‘extremity score FT’ % �0.8. Candidates were required to have at least 5

conformotypic peptides (full or half-tryptic) and a protein sequence coverage of 20%.

Isothermal dose-response experiments
Concentration-dependent structural effect curves for single conformotypic peptides were generated by plotting the log2 transformed

mean intensities over the compound concentration range centered on the log2 transformedmean peptide abundance in the absence

of metabolite (C0 = 0mM, vehicle). These relative abundance values represent the conformotypic peptide local structural response at

the correspondingmetabolite concentration relative to a control condition. For each peptide the structural response in the absence of

metabolite was fixed as basal structural effect level, thus the maximal structural effect as a function of metabolite concentration was

equal to zero for all cases where the conformotypic peptide abundance decreased with metabolite concentration. Conversely, the

minimal structural effect as a function of metabolite concentration was equal to zero for all cases where the conformotypic peptide

abundance increased with metabolite concentration. Error bars show the standard error of the mean (SEM). Means of the

C0-centered log2 abundances were calculated based on data from at least three biological replicates. Secondary axes of the curves

reported in Mendeley data indicate the coefficient of variations of the abundances of peptides measured at a fixed concentration of

metabolite calculated over at least three biological replicates.

Fitting of dose-response curves to a sigmoidal dose-response model was performed using the R package drc (https://www.

r-project.org). For each peptide, log2 C0-centered displacement values relative to the control were fitted to concentrations of metab-

olite using a 4-parameter logistic equation:

fðxðb; c;d; eÞÞ= c+
d � c

1+ expfbðlogðxÞ � logðeÞÞg
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where the parameter b is the relative slope around the logarithm o
f the inflection point, c is the lower limit, d is the upper limit, and e

corresponds to EC50, that is the dose producing a response half-way between upper and lower limits.

For upregulated peptides (relative abundance increased with metabolite concentration) the lower limit was fixed at zero, and for

downregulated peptides (relative abundance decreased with metabolite concentration) the upper limit was fixed at zero to allow

proper fitting. The EC50 is the dose that produces a structural response equal to 50% of the upper limit, and it was extrapolated

from the 4-parameter logistic equation reported above. If the EC50 concentration was below the lowest (not-vehicle) concentration

tested (e.g., 1 mMATP), the EC50 was not considered valid, and it was assigned a value < 1mM, since less than three concentrations

were measured between the vehicle control concentration and the extrapolated EC50 (three measurable points within the EC50

range). In this work we extracted EC50 values from LiP-SMap data in order to estimate apparent affinity quantitative parameters

in cell extracts. We therefore call these parameters ‘in-extract Kd’ values.

For the analysis of the allosteric effector proteins for ATP the in-extract Kd values reported in Figure 7B were relative to the con-

formotypic peptidemeasured for the listed proteins. In caseswheremore than one conformotypic peptide was detected, the average

in-extract Kds of all conformotypic peptides is reported.

Statistical analyses
All statistical analyses, string processing, and data visualization after the estimation and error analysis of peptide abundances were

performed using R (version 3.3.1) and Python (version 2.7) and the Python library Pandas (version 0.18.1). Significance levels of p

values are graphically represented with: *** for p values less than 0.001, ** for p values between 0.01 and 0.001 and * for p values

between 0.1 and 0.01.

DATA AND SOFTWARE AVAILABILITY

Themass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository

with the dataset identifier PXD006543. The complete SEC-MS and dose-response curve datasets are available through Mendeley

(https://doi.org/10.17632/nhsktkcs3d.1).
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Figure S1. Sensitivity and Specificity of the LiP-SMap Pipeline, Related to Figure 2

(A) Protein binding specificity of E. coli metabolites. The characterized interactions are classified as allosteric (cyan) or catalytic (blue). Catalytic interactions

include both metabolic and non-metabolic interactions.

(B) Number of known and novel MBPs identified by LiP-SMap at low and high concentrations of ATP, PEP, and L-Phe.

(C) Distribution of protein sequence coverage of MBPs identified with LiP-SMap for ATP, PEP, and L-Phe. Horizontal lines define the median, and boxes the 25th

and 75th percentiles; whiskers represent the maximum and minimum values. Median values for all proteins detected in the three LiP-SMap experiments are

reported on top of the boxplots. The sequence coverage is a measure of the fraction of the protein sequence for which structural data could be derived.

(D) Distribution of protein sequence coverage between known protein targets identified (dark green) and not identified by LiP-SMap (light green) in the exper-

iments with ATP, PEP, and L-Phe. Knownprotein targets were derived from literaturemining. Themedian sequence coverage of the knownMBPs detected by the

assay is significantly higher than the median sequence coverage of the known MBPs not captured by LiP-SMap. Significance determined using two-sided

Wilcoxon test, *** p value < 1.48*10�13).

(E) Sensitivity of LiP-SMap relative to all proteins with at least 30% protein sequence coverage by MS. S.C. = Sequence coverage.

(F) Residual endogenous metabolite concentration relative to the initial concentration measured in diluted cell lysates at t = t0 after different time points. t1: After

10min. from the lysis procedure while different procedures for removing endogenous metabolites were performed (see below). t2: After further incubation at 25
�C

for 10 min. Methods for removal of endogenous metabolites were: no treatment (blue), Filtration with 10K MW cut-off filter (orange), filtration with 3K MW cut-off

filter (gray), Gel filtration (yellow). Gel filtration was the most efficient method for metabolite dilution, thus it was implemented in the LiP-SMap protocol. Final

Concentrations of the tested metabolites after the gel filtration clean-up were: succinate 17.2 mM, aspartate 3.1 mM, glutamate 4.8 mM, malate 8 mM, phenyl-

alanine 1.7 mM, AKG < 0.1 mM, PEP 4.4 mM, ATP 8.6 mM, ADP 2.3 mM.
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Figure S2. Assessment of Overall Data Quality, Related to Figure 3

(A) Number of distinct metabolites bound by the same protein as detected by LiP-SMap. The fraction of the proteome undergoing structural variations upon

metabolite binding corresponds to approximately one third of the total (620 proteins out of 2565).

(B) Fraction over total of previously reported (light hue) and new (dark hue) MBPs identified in the LiP-SMap screen. Metabolites are divided into four classes:

amino acids, organic acids, sugar phosphates, and nucleotides. Numbers inside the bars indicate the percentage of new MBPs relative to all MBPs hits.

(C) Contingency table summarizing the overlap between the hits found with the LiP-SMapmethod and the known interactions from the BRENDA database. Of the

9717 potential pairs that could be mapped to enzyme classification (EC) numbers in BRENDA, 584 were reported in at least one organism (157 from E. coli, 144

from other bacteria but not in E. coli and 283 from Archaea or eukaryotes but not in any bacterium). The true positive rate (i.e., the percentage of known interaction

pairs that were recovered by LiP-SMap) was 15.6%, and the false positive rate was 5.5%. LiP-SMap hits have a much higher probability to be found in the

BRENDA database than protein not classified as metabolite binders by LiP-SMap (Fisher exact test p value = 1.7 3 10�17).

(D) Receiver operating characteristic (ROC) curve of all protein-metabolite interactions rated with the minimal q-value calculated for each protein-metabolite pair

when measuring differential peptide abundances by LiP-SMap. The ground truth is represented by the 157 known E. coli enzyme-metabolite pairs (Reznik et al.,

2017). The gray line represents a random classifier.

(E) Relationship between the number of distinct references relative to metabolite protein interactions found in protein orthologs after mining the BRENDA

database and the recovery rate obtained by LiP-SMap. Recovery rate is defined as the percentage of reference enzyme-metabolite pairs in BRENDA that were

classified as a hit by Lip-SMap. Numbers on top of the bars indicated the absolute number of recovered interactions found by LiP-SMap and expected in-

teractions from the BRENDA reference set respectively. The number of references found in BRENDAwas used to bin each interaction by frequency (0; 1; 2; 3; 4; 5;

> 5). For each category, we applied the Fisher exact test to seewhether the enrichment of BRENDA interactions among LiP-SMap hits was statistically significant:

* indicates a p value between 0.01 and 0.1, ** between 0.001 and 0.01, and *** are p values below 0.001.

(F) Same as in (e), but with each enzyme-metabolite pair found in BRENDA binned by taxonomy (other kingdoms, other bacteria, E. coli).

(G) Number of interactions that fulfill each of the criteria we defined to prioritize interactions found by LiP-SMap: C1 = Detected at both concentrations; C2 =

detected with peptide fold change > 4; C3 = Multiple conformotypic peptides per protein found; C4 = evidence of genetic interactions; C5 = found in orthologs.
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Figure S3. Characterization of the Metabolite-Proteome Interaction Network in E. coli, Related to Figure 3

(A) Prevalence of secondary structural elements in conformotypic and detected peptides. Most of the peptides have an average peptide length of 12 amino acids

and map to regions devoid of secondary structure or loops.

(B) Comprehensive maps of all E. coli metabolite-protein interactions for each metabolite type. MBPs included proteins that encompassed a wide-range of

functions as categorized in Clusters of Orthologous Groups (COGs). Each line represents an interaction found with LiP-SMap between one of the 20 metabolites

screened and a protein target. Letters in gray boxes correspond to COG categories: A, RNA processing and modification; B, chromatin structure and dynamics;

C, energy production and conversion; D, cell cycle control and mitosis; E, amino acid metabolism and transport; F, nucleotide metabolism and transport; G,

carbohydrate metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; J, translation; K, transcription; L, replication and repair; M, cell wall/

membrane/envelope biogenesis; N, cell motility; O, post-translational modification, protein turnover, chaperone functions; P, inorganic ion transport and

metabolism; Q, secondary structure; T, signal transduction; U, intracellular trafficking and secretion; Y, nuclear structure; Z, cytoskeleton; R, general functional

prediction only; S, function unknown.

(C) Relative distribution of detected proteins (top) and MBPs (bottom) between the membrane and soluble (i.e., cytosolic) compartment according to the

PANTHERGO slim cellular component functional annotation. Percentages refer to the total number of proteins with GO annotation in PANTHER (Protein ANalysis

THrough Evolutionary Relationships) version 12.0, released 2017-07-10.

(D) Frequencies of MBPs detected by LiP-SMap that belong to Gene Ontology (GO) functional categories expressed as percentages over the total number of

MBPs detected. The categories considered were: Catalytic activity (GO:0003824), no function annotated, binding (GO:0005488), structural molecule activity

(GO:0005198), transporter activity (GO:0005215), translation regulator activity (GO:0045182), antioxidant activity (GO:0016209), receptor activity (GO:0004872).

GO classification was performed using PANTHER.

(E) Distribution of enzyme classifications (EC) numbers among enzymes analyzed with LiP-SMap. EC numbers of metabolic enzymes were obtained from the

genome-scale model of E. coli of Orth et al. (Orth et al., 2011). Percent of proteins detected in this study with indicated EC numbers (left). Percent of enzymes

shown to bind at least one metabolite with indicated EC numbers (right): EC 1, oxidoreductases; EC 2, transferases; EC 3, hydrolases; EC 4, lyases; EC 5,

isomerases; EC 6, ligases. If an enzyme was associated with more than one EC number, each association was treated independently. For all metabolites

screened, except GTP, data from the samples treated with the highest concentration of metabolite are reported. Concentrations used are specified in Table S1.
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Figure S4. Further Characterization and Novel Regulatory Processes of the Metabolite-Proteome Interaction Network in E. coli, Related to

Figures 3 and 4

(A) Interactionmap of LiP-SMap-detected protein-metabolite interactionswithin the family of ‘core proteome’ proteins as defined in Yang et al. (Yang et al., 2015).

Each row shows the core proteome proteins detected by MS in this screen. Dark brown boxes indicate MBPs assigned with LiP-SMap to the metabolite in the

corresponding column.

(B) For each protein, the coefficient of variation (CV), calculated as the relative standard deviation in protein expression across conditions was plotted versus the

cumulative frequency of proteins (fraction of proteins). Only data from conditions in which a protein was reliably quantified (relative error of quantification < 30%)

was used, and only proteins for which more than 50% of the conditions yielded reliable protein quantification were used. Protein concentrations were calculated

from protein copy numbers and cell volumes and were obtained for 22 steady-state E. coli growth conditions as described in Schmidt et al. (2016). The left panel

shows the cumulative distribution of CV for proteins with at least one conformotypic peptide measured in LiP-SMap experiments with any of the 20 metabolites

assayed (orange) and proteins with no conformational changes measured in LiP-SMap experiments with any of the 20 metabolites assayed (black). The right

panel shows the cumulative distributions of CVs for the two classes excluding the LiP-SMap experiments with the highest number of protein hits (GTP, ATP,

citrate). MBPs have a lower median CV than the rest of the proteome (two-sidedWilcoxon test: *** p value < 6.54*10�5 for all metabolites, ** p value = 5.8*10�3 for

all metabolites excluding ATP, GTP and Citrate).

(C) Enzymatic reactions catalyzed by Ppc, G6PDH, and PpsA.

(D) Ppc activity in presence of 0.1 mM acetyl-CoA, 1 mM FBP, or both metabolites normalized to Ppc activity in absence of the effector. Error bars indicate SD

(n = 4). Addition of 0.1 mM acetyl-CoA strongly enhanced Ppc activity �8-fold, whereas 1 mM FBP enhanced activation 2-fold.

(E) In vitro activity of purified Ppc at different 2-oxoglutarate (AKG) or malate concentrations. Error bars indicate SD (n = 4).

(F) PpsA activity at different FBP concentrations measured as a decrease in absorbance at 340 nm in coupled assay with PEP carboxylase and malate

dehydrogenase.
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Figure S5. Novel Interactions at Catalytic Sites, Related to Figure 5

(A) Schematics of positions of conformotypic peptides (green bars) that map within the active site boundaries (distance below 6.44 Å; left) and outside the active

site neighborhood (distance greater than 11.66 Å; right). In both cases the center of the active site is approximated as the position of known substrates or products

(legend continued on next page)



of the reaction catalyzed by the active site in an experimentally determined structural model of the protein enzyme (red star). Depending on the relative position of

the conformotypic peptide from the active site different types of functional protein-metabolite interactions can be hypothesized.

(B) Summary of the number of conformotypic peptides and unique domains mapping inside an active site, inside an active site closely enough to form hydrogen

bonds (HB), and at a distance outside the active site neighborhood. See STAR Methods for details.

(C) Summary of the percentages, numbers of conformotypic peptides, and numbers of unique domains mapping inside an active site, inside an active site closely

enough to form hydrogen bonds (HB), and at a distance outside the active site neighborhood. Relative frequencies and percentages were calculated considering

a single peptide and one metabolite holocomplex for individual proteins. For the pie chart of Figure 5C, relative frequencies and percentages were calculated for

multiple holocomplexes involving the same protein.

(D) Metabolite reactants most frequently found within the active site boundaries of promiscuous binding clefts, as defined by the LiP-SMap analysis. Those

metabolite reactants are the real substrate or products of known metabolic reactions catalyzed in the active sites. The percentages of metabolite reactants

observed relative to the total number of metabolites mapped to an active site are plotted. Abbreviations not explicitly cited in the main text refer to: flavin adenine

dinucleotide oxidized form (FADox), pyridoxal phosphate (PLP), 2-ketoglutarate (AKG), D-glucosamine 6-phosphate (Gluc6P), adenosine monophosphate

(AMP), coenzyme A (CoA), 5�amino�1�(5�phospho�D�ribosyl)imidazole�4�carboxylate (5IC).

(E) Number of Pfamprotein domain familiesmost often foundwithin the active site boundaries of promiscuous binding clefts as defined by the LiP-SMap analysis.

(F) Mass spectrometry-based PfkB assays. No consumption of two alternative substrate pairs: i) glucose-6-phosphate (G6P) and ATP (left panel) or ii) glucose-6-

phosphate and guanosine triphosphate (GTP) (right panel) were observed. The expected product pairs were glucose-1,6-bisphosphate (GBP) and adenosine

diphosphate (ADP) (left panel) and glucose-1,6-bisphosphate (GBP) and guanosine diphosphate (GDP) (right panel).

(G) Mass spectrometry-based PfkB activity assay: Time courses of product formation and substrate consumption by purified PfkB in the reaction that converts

2.5mM fructose-6-phosphate (m/z 259.0231 HXP -H(+)) and 2.5mMATP (m/z 505.9882 ATP -H(+)) into fructose-1,6-bisphosphate (m/z 338.9884 FBP -H(+)) and

ADP (m/z 426.0216 ADP -H(+)). Data represent mean values ± SD (n = 3).



Figure S6. Metabolite-Induced High-Order Structural Changes Analysis, Related to Figure 6

(A) Proteins with at least 80% of their conformotypic peptides that indicated resistance or susceptibility to protease activity upon metabolite binding were

selected by analyzing separately peptides with non-tryptic termini (half-tryptic, HT) and peptides with both tryptic ends (fully tryptic, FT) (Figure 1B). Since HT

peptides result from the proteolytic cleavage of FT peptides at structurally accessible regions after LiP, general upregulation of HT combined with vast down-

regulation of FT peptides indicate a broad increase in cleavage sensitivity. Conversely, general upregulation of FT and downregulation of HT signal extensive

protease resistance. The plot shows the positions of FT (red) and HT (blue) peptides over the amino acid sequence of RpsC (UniProt: P0A7V3). Vertical red lines

indicate the position of tryptic cleavage sites along the RpsC amino acid sequence. Peptides that are present at higher levels in the presence than in the absence

(legend continued on next page)



of ATP are illustrated with triangles with vertices pointing upwards; downregulated peptides are indicated by triangles with vertices pointing downwards. In this

example, all (100%) FT peptideswere downregulated, and 92%of theHT peptides (11 peptides of 12) were upregulated, therefore RpsC becomes generally more

protease sensitive upon binding to ATP (for more details see STAR Methods).

(B) Details of the peptide cluster family of the RpsC sequence between amino acids 65 and 79, which includes 2 upregulated HT peptides and 2 downregulated FT

peptides.

(C) SEC elution profile equivalent to that shown in Figure 6C obtained by summing theMS1 intensities of peptide precursors of IlvH for each SEC fractions. Signal

intensities were normalized to the maximum signal measured in the 24 SEC fractions collected with and without ATP.

(D) Co-elution of 6 non-ATP binders by SEC upon addition of metabolite in the running buffer. More than 300 profiles showing similar co-elution behaviors are

available in Mendeley data (see Data and Software Availability for link).

(E) SEC elution profiles of IlvI. The sums of peptide counts detected for each SEC fraction relative to themaximum intensity measured were plotted when ATPwas

absent (blue line) or present (red line) in the elution buffer. The molecular weight of monomeric IlvI predicted from its sequence is 63 KDa. The peak shoulder

toward lower elution volumes present in the SEC separation performed in presence of ATP may suggest the formation the acetolactate synthase hetero-

tetrameric complex with IlvH with stoichiometry [IlvI]2[IlvH]2 and molecular mass of 155 KDa, which is the active form of the enzyme (Vyazmensky et al., 1996).

(F) Differential SEC elution profiles of RpsJ, RpsB, and RplE subunits of the 30S ribosome complex. These three subunits were among those seven ribosomal

proteins that changed their elution volume when ATP was added to the running buffer.

(G) Differential SEC elution profiles of FtsZ as described in (e).



(legend on next page)



Figure S7. Metabolite Influence on Proteinase K and on Endogenous Proteolytic Activities, Related to STAR Methods

(A) Influence of metabolites on proteinase K activity.We spiked 39 synthetic peptides into E. coli lysates. After limited proteolysis with proteinase K, samples were

analyzed by SRM-MS in presence of 25 mM GTP or vehicle, and peptides were quantified using a label-free MS approach. For each peptide the ratio between

signal intensities measured in presence of 25 mM GTP (Signal intensity treated) or in presence of vehicle solution (Signal intensity untreated) after limited pro-

teolysis are shown. All LiP intensity values were normalized to intensities observed in samples digested only with trypsin. Data collected on GTP are shown here

as GTP bound the highest number of proteins among those ligands evaluated with LiP-SMap. Error bars indicate SE (n = 3).

(B) Same as (a) where each dot represents the mean of three biological replicates for each metabolite (n = 3).

(C) Differential abundance analysis of peptides generated from tryptic digestions of E. coli cell lysates in presence of ATP, PEP, FBP, or glucose-6-

phosphate (G6P). Lysates treatedwithmetabolite or only vehicle were analyzed in at least three biological replicates. Peptidesmapped to proteins that are known

interactors of individual metabolites are reported in blue (enzymatic) or cyan (allosteric). Peptides that pass the fold change (FC) cut-off (jFCj > 2) and q-value cut-

off (q-value < 0.01) are shown in red. No peptides of the lysates changed abundance in presence of any of the metabolites with the exception of

KGGPLADGIVITPSHNPPEDGGIK (mapping to phosphoglucomutase, UniProt P36938) and DKSLHALEK (mapping to g-glutamyl-g-aminobutyraldehyde de-

hydrogenase. UniProt: P23883).
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