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High-throughput metabolomic analysis predicts mode 
of action of uncharacterized antimicrobial compounds
Mattia Zampieri,1*† Balazs Szappanos,1,2* Maria Virginia Buchieri,3* Andrej Trauner,4,5 
Ilaria Piazza,6 Paola Picotti,6 Sébastien Gagneux,4,5 Sonia Borrell,4,5 Brigitte Gicquel,3 
Joel Lelievre,7 Balazs Papp,2 Uwe Sauer1

Rapidly spreading antibiotic resistance and the low discovery rate of new antimicrobial compounds demand more 
effective strategies for early drug discovery. One bottleneck in the drug discovery pipeline is the identification of the 
modes of action (MoAs) of new compounds. We have developed a rapid systematic metabolome profiling strategy 
to classify the MoAs of bioactive compounds. The method predicted MoA-specific metabolic responses in the non-
pathogenic bacterium Mycobacterium smegmatis after treatment with 62 reference compounds with known MoAs 
and different metabolic and nonmetabolic targets. We then analyzed a library of 212 new antimycobacterial com-
pounds with unknown MoAs from a drug discovery effort by the pharmaceutical company GlaxoSmithKline (GSK). 
More than 70% of these new compounds induced metabolic responses in M. smegmatis indicative of known MoAs, 
seven of which were experimentally validated. Only 8% (16) of the compounds appeared to target unconventional 
cellular processes, illustrating the difficulty in discovering new antibiotics with different MoAs among compounds 
used as monotherapies. For six of the GSK compounds with potentially new MoAs, the metabolome profiles suggested 
their ability to interfere with trehalose and lipid metabolism. This was supported by whole-genome sequencing of 
spontaneous drug-resistant mutants of the pathogen Mycobacterium tuberculosis and in vitro compound-proteome 
interaction analysis for one of these compounds. Our compendium of drug-metabolome profiles can be used to 
rapidly query the MoAs of uncharacterized antimicrobial compounds and should be a useful resource for the drug 
discovery community.

INTRODUCTION
Despite rapid technological progress, the discovery of new antibiotic 
drugs has been stalled for the past 50 years. To combat the growing 
burden of antibiotic resistance, innovative drug discovery approaches 
are required to improve and expedite the antibiotic discovery process 
(1, 2). To overcome the intrinsic difficulties of target-based screens 
and to move beyond well-known targets, phenotype-based screening 
methods are a valid alternative (3). In a classical phenotypic screening 
approach, promising antimicrobial compounds are selected on the 
basis of their empirical ability to prevent cell growth in vitro (4). 
However, the lack of efficient, rapid, and systematic methods to in-
vestigate the modes of action (MoAs) of newly discovered cell growth 
inhibitors has often misguided the selection of the most promising 
lead compounds (5).

Current systematic inference of MoAs in large chemical libraries 
is based on large-scale in vitro direct biochemical techniques (2), 
comparison of chemical structures (6), or functional genomics ap-
proaches. These include in vitro resistance mutation mapping (7), cy
tological profiling (8), monitoring of transcriptional responses (9, 10), 
and phenotypic assays (11–14) to probe interactions with other drugs 
(15, 16), gene deletion/overexpression (17–21), or culture media (22). 
Although such strategies have been successfully used (22–25), their 

applicability and scalability are often hampered by cost, reliability, and 
their labor-intensive nature (26, 27).

Emerging applications of metabolomics in drug discovery have 
focused on biomarker identification and therapeutic monitoring, but 
only a few are aimed at determining drug MoAs (28–35). Large-scale 
applications of classical metabolomics techniques are hampered by 
limited coverage and laborious sample preparation. To address these 
limitations and to enable systematic testing of large libraries of bio-
active compounds in vivo, we developed an approach based on non-
targeted mass spectrometry in combination with ad hoc data mining 
to enable high-throughput inference of drug MoAs. We first validated 
our approach on a set of 62 reference compounds with known MoAs 
applied to the nonpathogenic bacterium Mycobacterium smegmatis 
and then used this technique to infer MoAs of a library of 212 unchar-
acterized antimycobacterial compounds.

RESULTS
Dynamic metabolome profiling after treatment with 
reference compounds
We built a reference base of metabolic responses from 62 reference 
compounds, including currently used antibiotics and chemical stress 
agents, with 17 known MoAs (Fig. 1, A to C, and table S1). These MoAs 
included inhibition of bacterial DNA replication, protein synthesis, cell 
wall synthesis, and folate synthesis. Reference compounds were admin-
istered at three to four concentrations from subinhibition to full inhibi-
tion of exponentially growing isogenic M. smegmatis in culture at an 
optical density (OD595) of 0.4 in 96-well deep plates (table S2 and Fig. 1A). 
The dynamic metabolome response was assessed by withdrawing 80 l 
of bacterial culture 5, 30, 60, 180, 360, and 600 min after exposure to the 
compounds. To facilitate dynamic sampling at high throughput and 
reduce the risk of sample processing artifacts, the whole culture broth 
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was extracted without cell separation using cold solvent 
extraction and then directly injected into a time-of-flight 
mass spectrometer (Fig. 1A) (36). This procedure enabled 
rapid profiling of relative dynamic changes of ~15,000 ions, 
out of which 1006 could be putatively annotated as depro-
tonated metabolites. In total, we monitored dynamic me-
tabolite changes across 431 compound-treated conditions 
and two mock treatments [vehicle controls: H2O or dimethyl 
sulfoxide (DMSO)] over seven time points in three biological 
replicates (Fig. 1B).

Raw mass spectrometry data were normalized by cor-
recting for instrumental and systematic biases. Before 
identifying drug-responsive metabolites, we eliminated 
contaminating ions that were identified in spectra for pure 
compounds dissolved in water. After removal of drug-
associated contaminating ions, a linear model was used 
to decouple the contribution of the drug treatment to the 
metabolic changes from plate-to-plate variance, differences 
in extracted biomass, and background noise. A Z-score 
normalization was applied before estimating the average 
and SD over the three biological replicates (see Materials 
and Methods, table S2, and figs. S1 and S2).

To systematically identify metabolites undergoing sig-
nificant changes upon treatment with a drug or compound, 
we used a regression analysis originally described for dy-
namic transcriptomics data (37). For each compound, 

A

B

D E

C

Fig. 1. Antibiotic-induced metabolome responses in M. smegmatis. 
(A) Metabolomics workflow. Cells were grown in 700-l volumes in 
96-well plates to an OD595 of about 0.4, before addition of 10 l of 
the antimicrobial compound. Cell culture (80 l) was withdrawn 
from each well at each sampling time. Forty microliters was used to 
determine cell density, and the remaining 40 l was added to cold 
extraction buffer. Supernatant was directly injected into a time-
of-flight mass spectrometer, and relative changes in metabolite 
intensities were extrapolated from processing of the metabolome 
data. (B) Compounds tested. Almost half of the compounds tested 
included different concentrations of reference antimicrobials (yellow) 
and chemical stress agents (green) with known MoAs; the remainder 
were compounds from a GSK library used at 10 M concentration 
(blue). (C) Distribution of MoAs for the 62 reference compounds. ATP, 
adenosine 5′-triphosphate. (D) Schematic representation of the drug-
metabolome response data set. For each antimicrobial compound 
tested, the dynamic profile of 1006 metabolites was interrogated. As 
an example, the top graph illustrates the response of the folic acid 
biosynthesis intermediate 4-aminobenzoic acid to the antimicrobial 
para-aminosalicylic acid (PAS) (red, 104 M; gray, 41 M; blue, 25 M). 
The bottom graph shows the response of the bacterial metabolite 
mycobactin to the known antimicrobial isoniazid (red, 1.5 mM; gray, 
0.22 mM; blue, 0.11 mM). Thick lines represent the results from the 
impulse model fitting analysis for the three drug concentrations. 
Metabolic profiles of 4-aminobenzoic acid and mycobactin across all 
conditions are shown in light gray. (E) Distribution of metabolic re-
sponse onset times for antibiotics belonging to the seven main anti-
biotic categories tested in this study. The onset time is defined as the 
time at which metabolite changes reached half of their maximum 
change after treatment of M. smegmatis with the compounds. For 
each perturbation (treatment with compound), metabolites with a 
model fitting R2 ≥ 0.6 and a maximum absolute log2 fold change ≥ 2 
were retained.
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dynamic profiles of all metabolites were fitted by a model with five 
parameters, capable of describing different dynamic adaptive changes 
of metabolites to new steady-state levels. Fit quality estimated by ad-
justed R2 values and the magnitude of metabolite changes were used 
to select responsive metabolites (Fig. 1D). On average, for each in-
dividual perturbation, about 5% of the detected metabolites exhibited 
significant changes (adjusted R2 ≥ 0.6 from fitting analysis and abso-
lute log2 fold change ≥ 2) (figs. S3 and S4), and the majority exhibited 
a significant response in at least one of the treatments (table S3). The 
onset time of metabolite responses reflected the distance of drug targets 
to metabolism. For example, very rapid responses occurred for drugs 
directly targeting metabolic processes, such as inhibitors of folate syn-
thesis, whereas delays in the timing of the response onset occurred 
upon treatment with antibiotics targeting bacterial protein synthesis 
or DNA replication (Fig. 1E). Given that a broad common response to 
bactericidal antibiotics has been suggested (30), we investigated which 
metabolites exhibited nonspecific responses common to most pertur-
bations. To this end, for each metabolite, we computed the average of 
fitting R2 values across all tested conditions and the average of largest 
absolute Z scores detected along the time course in each treatment. 
Overall, the commonality of metabolic changes across all tested pertur-
bations was very low (Fig. 2A). Most metabolites affected across multi-
ple conditions were likely associated with general stress responses and 
exhibited a low but significant correlation with growth inhibition (Fig. 2A 
and fig. S5). For example, the accumulation of glycerol 1-phosphate, the 
first degradation product of glycerol, exhibited a mild but significant 
correlation (P ≤ 1 × 10−10) with growth reduction (Fig. 2A). Overall, 

our data suggested that common changes independent of drug MoAs 
were an indirect effect of growth-related processes. Given that this 
conclusion was based on applying most drugs at subinhibitory concen-
trations, future work with these and other bactericidal drugs should 
examine the presently controversial issue of a common mechanism 
of antibiotic-induced cell death (38, 39).

Metabolome response similarity and proximity of metabolic 
changes to drug-target
Next, we asked whether drug-specific responses occurred in the prox-
imity of corresponding targets and might therefore help to reveal 
the underlying MoAs. We used a genome-scale metabolic model of 
M. smegmatis (40) to calculate the distance between each enzyme-
metabolite pair as the minimum number of reactions connecting the 
two. To assess whether metabolites exhibiting the largest change in 
magnitude tended to be located in the proximity of an enzyme, we 
used a weighted scoring function, in which all metabolic changes were 
weighted by the respective distance to the tested enzyme. In this anal-
ysis, the timing of the response was not taken into account as, for each 
metabolite, the maximum absolute fold change during the time course 
was selected. For each treatment and individual enzyme, we systemat-
ically assessed the significance of the proximity of metabolic changes 
by a permutation test (table S5). Enzymes with a significant enrich-
ment for proximal metabolic changes could be direct drug targets or 
indirect mediators of the immediate cellular response. Both types of 
metabolic changes defined what we called the mode of metabolic in-
terference of the compound. To identify the most overrepresented 

A B

Fig. 2. Commonalities among metabolite changes in response to antimicrobial treatment. (A) Correlation between growth rate and metabolite abundance in M. smegmatis 
after treatment with antimicrobial compounds. Each dot represents a metabolite. The two axes represent the mean R2 across all tested conditions and the mean of maximum 
Z scores across all tested conditions and time points. Color reflects the degree of Spearman correlation between maximum Z score and growth inhibition across all tested 
conditions. Metabolites with an average R2 ≥ 0.5 and log2 Z score ≥ 0.5 are shown. UDP, uridine 5′-diphosphate; GDP, guanosine diphosphate; CDP, cytidine 5′-diphosphate. 
(B) Pathway enrichment for metabolome responses to antibiotics with seven known MoAs: (1) cell wall synthesis inhibitors, (2) DNA cleavage, (3) folic acid biosynthesis inhib-
itors, (4) quinolones, (5) mycolic acid biosynthesis inhibitors, (6) protein synthesis inhibitors, and (7) RNA synthesis inhibitors. Enrichment was performed with the 50 most 
frequently identified genes for each antibiotic class. The heat map shows enriched KEGG metabolic pathways with q ≤ 0.01.
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metabolic pathways across compounds with similar MoAs, we calcu-
lated the probability for each enzyme to exhibit local metabolic changes 
within groups of compounds with the same MoA. The resulting top 
50 enzymes with consistent low P values for multiple drugs of the same 
class, identified across seven main antibiotic categories with known 
MoAs, were selected and subjected to Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis (41) and correc-
tion for multiple tests (Fig. 2B and fig. S6) (42).

Identified genes in most antibiotic classes showed strong func-
tional dependencies for the drug MoA. For instance, enzymes in fo-
late biosynthesis were overrepresented in antifolate drug treatments, 
and enzymes related to nucleotide biosynthesis and DNA replication 
were overrepresented when M. smegmatis was treated with quinolones. 
In contrast, enzymes in amino acid and aminoacyl-tRNA (transfer RNA) 
biosynthesis or RNA degradation were enriched upon treatment with 
protein or RNA synthesis inhibitors, respectively (Fig. 2B). The link 
between the mode of metabolic interference and the MoA of inhibi-
tors of cell wall synthesis or mycolic acid biosynthesis was less clear, 
potentially a consequence of the limited lipid coverage by the metab-
olomics method used (table S6). Nevertheless, the distinct profiles of 
metabolites that were often proximal to the target suggested that drugs 
with common MoAs featured similar metabolic signatures, regardless 
of whether the target was metabolic or not.

To compare the metabolome responses across multiple drugs, we 
calculated the similarity of metabolic changes between drug pairs by 
computing pairwise mutual information values for each pair of drugs 
at the corresponding time points. Next, the pairwise metabolome sim-
ilarity between time points within 3 to 10 hours after drug exposure 
was summed up into one unique similarity score between drug pairs 
(fig. S1 and table S3). The context likelihood of relatedness algorithm 
(43) was applied to prune false dependencies due to promiscuity in the 
metabolic responses across different drugs, most likely caused by com-
mon indirect growth-related processes (44). By selecting only those 
perturbations with known targets, we demonstrated that compounds 
with similar MoAs induced similar metabolic responses (Fig. 3A). 
On average, compounds targeting nonmetabolic processes, such as 
quinolones and DNA cleavage inducers, or compounds targeting the 
30S rather than the 50S ribosomal subunits (fig. S7) featured more 
similar metabolic signatures than did antibiotics with similar MoAs 
but different enzymatic targets (for example, ampicillin versus cy-
closerine) (Fig. 3, A and B). Overall, we demonstrated that antibiotics 
with common MoAs had a strong tendency to elicit similar metabolic 
responses (fig. S8). We also observed that certain classes of antibiotics, 
like quinolones, exhibited on average higher metabolome similarity 
than did others, such as cell wall inhibitors (Fig. 3, A and B).

To avoid any bias and to predict the MoAs of uncharacterized com-
pounds, we developed a computational framework in which the distri-
bution of pairwise similarities between the uncharacterized compound 
and compounds with known MoAs was first rank–transformed, and q 
values indicating the statistical significance of a MoA as a top-ranking 
antibiotic class were calculated with an iterative hypergeometric dis-
tribution formula (45). To test the ability of metabolome-based simi-
larity to predict the MoAs of potential new antimicrobial compounds, 
we used a procedure in which a reference agent, from MoAs with 
more than one reference compound, was treated as an uncharacter-
ized compound and its MoA predicted de novo. Metabolome-based 
predictions of MoAs exhibited good agreement with known MoAs 
(area under the ROC curve = 0.87; Fig. 3C). Hence, we concluded that 
dynamic metabolome changes induced by treating M. smegmatis with 

antimicrobial drugs reflected functional drug properties and could be 
used to infer the underlying MoAs. Given that different concentrations 
of the same antibiotic typically elicited similar metabolite responses 
(fig. S9), we simplified the screening of new compounds by using a 
single drug dosage.

Metabolomics-based prediction of MoAs for 
uncharacterized compounds
Given the potential capacity to distinguish known MoAs through dy-
namic metabolome responses, we set out to classify MoAs for 212 un
characterized antimycobacterial compounds with chemical structures 
that differed from existing antibiotics, which were identified in a large-
scale phenotypic screen by GlaxoSmithKline (GSK) (4, 46). These 
compounds were able to kill Mycobacterium tuberculosis in vitro with 
minimum inhibitory concentrations (MICs) below 10 M and with 
limited toxicity to human cell lines; structures of these compounds have 
been made available (http://dx.doi.org/10.6019/CHEMBL2095176). 
M. smegmatis was challenged with 10 M of each GSK compound. 
Comparing the measured dynamic metabolome responses to those of 
the 62 reference compounds and testing the significance of overrep-
resented antibiotic classes among the most similar reference compounds 
allowed us to predict MoAs for these GSK compounds. GSK com-
pounds that did not meet a minimum enrichment q value of 0.05 were 
not classified in any of the tested MoAs. Most GSK compounds exhib-
ited a significant metabolome similarity to more than one MoA, with 
the majority associated with two MoAs. However, in most cases, the 
two predicted MoAs were functionally similar, for example, quinolones 
and DNA cleavage agents or inhibitors of mycolic acid synthesis or cell 
wall synthesis (fig. S10). Although our methodology could not fully 
resolve the molecular target of an uncharacterized compound solely 
from the metabolome profile, it did provide a robust prediction of the 
affected cellular process. For the GSK compounds with at least one 
significant (q ≤ 0.05) prediction, we focused on the most significant 
associated MoA (Fig. 4A and table S4). Although most GSK compounds 
were selected to be chemically distinct from known antibiotics (fig. S11 
and table S2), more than 70% of the tested GSK compounds were clas-
sified as having already known MoAs (table S4). Notably, our data did 
not enable us to differentiate whether these compounds interfered di-
rectly with classical antibiotic targets, whether they bound to different 
proteins in the same cellular process, or whether they indirectly in-
terfered with transcriptional regulation (47), proteome interactions 
(48), or enzymatic activation (for example, prodrugs) (49).

To validate our predictions for known MoAs, we focused on anti-
folate drugs that were among the first effective antimycobacterial agents 
and quinolones that exhibit a large spectrum of activities. Reference 
folate biosynthesis inhibitors have different targets (50). Trimethoprim, 
for example, directly targets the dihydrofolate reductase FolA in a non-
competitive manner, whereas others, like sulfamethizole, are com-
petitive inhibitors of the dihydropteroate synthase FolP. Yet, others, 
like PAS, are prodrugs with no clear molecular target (51). Because 
four of the five predicted antifolate GSK compounds exhibited high 
metabolome response similarity to trimethoprim, we tested the in-
hibitory activity of the five compounds on FolA. With a coupled in vitro 
enzyme assay, we demonstrated direct inhibition of M. smegmatis 
FolA by four GSK compounds (Fig. 4B). The remaining compound, 
GSK275628A, elicited a metabolome response most similar to PAS 
(table S4). In the case of a PAS analog, enzymatic activation would be 
necessary to achieve FolA inhibitory activity (Fig. 4B) (51). Hence, 
the result from the in vitro enzyme assay was consistent with our 
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metabolome-based predictions, suggesting a similar MoA to a prodrug 
for GSK275628A.

Given that quinolones are able to kill mycobacterial strains resist
ant to first-line antimycobacterial drugs (52), we attempted to validate 
the predictions for four GSK compounds with similar metabolic signa-
tures to quinolones. We tested the induction of DNA damage by each 
individual GSK compound using a green fluorescent protein (GFP) 
reporter plasmid of RecA promoter activity (53) in exponentially grow-
ing Escherichia coli. RecA is a key regulatory protein that induces the 

SOS response upon DNA damage (39, 54). 
Consistently, with our metabolome-based 
predictions, we demonstrated that three of 
the four GSK compounds predicted to be 
quinolone-like agents increased RecA pro-
moter activity (Fig. 4C). As a control, we 
tested ampicillin, DMSO, and three random-
ly picked GSK compounds (GSK2534991A, 
GSK1826825A, and GSK1518999A) pre-
dicted to be a protein synthesis inhibitor, 
folic acid biosynthesis inhibitor, and with 
an unknown MoA, respectively. All neg-
ative controls failed to elicit a RecA re-
sponse, reinforcing the specificity of the 
assay and the validity of our predictions 
(Fig. 4C). The quinolone-predicted GSK 
compound that failed to elicit RecA over
expression (BRL-7940SA) also did not ex
hibit any inhibitory activity, potentially 
because it could not penetrate the cell en-
velope of E. coli. Next, we asked whether 
any of the four predicted quinolone com-
pounds could directly inhibit the gyrase 
complex. We tested direct gyrase binding 
with an in vitro DNA supercoiling assay (fig. 
S12). One of the four predicted quinolone-
like antibiotics, GSK1066288A, directly 
inhibited activity of M. tuberculosis and 
E. coli gyrases, comparable to the fourth-
generation quinolone antibiotic moxiflox-
acin (Fig. 4, D and E, and fig. S13).

Given that the majority (that is, 77%) 
of the 212 tested GSK compounds exhib-
ited responses similar to known MoAs 
(Fig. 4A), our results suggested that the 
GSK library contained only a relatively 
modest number of compounds that could 
potentially affect nonconventional cellu-
lar processes. Among the about 25% of 
GSK compounds without a metabolome 
response similarity to known MoAs, 33 
did not show significant response differ-
ences (q ≥ 0.05) to the control conditions. 
These compounds were not active under 
the tested conditions, possibly hinting at 
a low penetration, or the metabolic re-
sponse was beyond our detection or cover-
age limits. The MoAs of these compounds 
need to be further characterized directly 
in M. tuberculosis (fig. S14). For the re-

maining 16 compounds with a metabolic signature different from 
any of the reference compounds, we identified enzymes in close prox-
imity to the detected metabolic changes and searched for enriched 
metabolic pathways (fig. S15 and table S2). These metabolome-based 
analyses suggested unique abilities of these compounds to interfere 
with nitrogen metabolism, oxidative phosphorylation, and the metab-
olism of fatty acids, vitamin B12, or glyoxylate (fig. S15). The highly 
similar metabolome responses for 6 of 16 compounds suggested a 
common MoA (Fig. 5A).

A

B C

Fig. 3. Pairwise similarity of antimicrobials with respect to metabolic changes induced in M. smegmatis. (A) Simi-
larity heat map for 62 reference antimicrobials. Similarity calculated between each drug-perturbed condition is rep-
resented as a symmetric heat map. Diagonal values are not taken into account and are set to not-a-number (gray). 
Highlighted boxes correspond to the seven main MoAs of the 62 reference compounds. (B) Magnification of panel in 
(A) showing antimicrobial compounds that blocked gyrase and cell wall synthesis in M. smegmatis. (C) Receiver oper-
ating characteristic (ROC) curve measuring the ability of metabolome-based predictions using the iterative hyper-
geometric test (45) to discriminate antibiotics sharing similar MoAs. Notably, we considered only MoAs that applied 
to more than one antimicrobial reference compound. CPR, ciprofloxacin; LVX, levofloxacin; MFL, moxifloxacin; NAL, 
nalidixic acid; NFL, norfloxacin; OFL, ofloxacin; AMX, amoxicillin; AMP, ampicillin; CCL, cefaclor; CTX, ceftriaxone; OCI, 
oxacillin; BAC, bacitracin; CYC, d-cycloserine; EMB, ethambutol; FOS, fosfomycin; AUC, area under the curve.
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To investigate the potentially new MoAs for these six GSK com-
pounds, we analyzed their similar responses more deeply. The most 
common and prominent metabolic changes occurred in ,-trehalose-
6-phosphate and neighboring metabolites in lipid metabolism, carbon 
metabolism, and the cobalamin/heme biosynthesis pathway (fig. S16, 
blue dots). GSK1829729A and GSK1829728A are chemically similar 
to tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide (THPP). Re-
cent pull-down experiments with Mycobacterium bovis demonstrated 
that THPP binds to EchA6, an enzyme homolog of enoyl–coenzyme 
A (CoA) hydratase that is involved in fatty acid synthesis (55). Consis-
tently, our network-based analysis of metabolic changes induced by 
GSK1829729A and GSK1829728A identified local changes in the 
proximity of several enoyl-CoA hydratase reactions (table S5). To test 
whether the six GSK compounds acted through a MoA similar to 
that of THPP, we selected M. tuberculosis H37Rv and Beijing GC1237 
mutants that were spontaneously resistant to GSK2623870A.

Spontaneous drug-resistant M. tuberculosis mutants have been exten-
sively used to resolve the MoAs of bioactive chemicals, because the mu-
tations can occur directly in the drug target (7) or may impact biological 
processes functionally related to the drug MoA (17). Mutants occurred 
at a frequency of 5 × 10−7 on solid media containing GSK2623870A 
(29.76 g/ml) (16× MIC). Despite the difference in chemical struc-
tures between THPP and GSK2623870A, whole-genome sequencing 
(WGS) revealed a single-nucleotide polymorphism (SNP) in the mmpL3 
gene (Rv0206c) of both H37Rv and Beijing GC1237 M. tuberculosis 
mutants (Fig. 5B). Notably, similar resistance mechanisms were 
observed for THPP (56), N-benzyl-69,79-dihydrospiro[piperidine-
4,49-thieno[3,2-c]pyran (SPIROS) (56), and N-(2-adamantyl)-N-
[(2E)-3,7-dimethylocta-2,6-dienyl]ethane-1,2-diamine (SQ109) (57). 
MmpL3 is an essential inner membrane transporter in M. tuberculosis, 
responsible for translocating mycolic acids in the form of trehalose 
monomycolates across the cell membrane (58, 59). It is also involved 

A

C D E

B

Fig. 4. Metabolome-based predictions of MoAs for 212 GSK compounds. (A) Grouping of metabolome similarity–based predictions for the 212 GSK compounds into 
known MoAs. (B) Impact of antimicrobial drugs on normalized FolA in vitro activity. The measured dihydrofolate conversion rate was normalized to the activity measured 
with DMSO vehicle only. All tested compounds were dissolved in DMSO: 40 M streptomycin (STR), 40 and 1333 M trimethoprim (TRM, TRM-H), 40 M PAS, and 40 M of 
six GSK compounds. (C) RecA promoter activity in exponentially growing E. coli treated with the following: four GSK compounds predicted to be quinolone-like agents 
(BRL-7940SA, BRL-10988SA, GSK1066288A, and GSK695914A), norfloxacin, ampicillin, DMSO, and three GSK compounds (GSK2534991A, GSK1826825A, and GSK1518999A) 
predicted to be a protein synthesis inhibitor, a folic acid biosynthesis inhibitor, or with an unknown MoA, respectively. (D) Gyrase activity of M. tuberculosis measured using 
an in vitro supercoiling assay at different concentrations of moxifloxacin or GSK1066288A. (E) Gyrase activity of E. coli in the presence of DMSO, moxifloxacin, streptomycin, 
or GSK1066288A. Activity of denatured gyrase was used as a negative control (ø).
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in heme uptake (60), potentially explaining the metabolome changes 
in heme biosynthesis seen in M. smegmatis in response to all six GSK 
compounds (fig. S16).

MmpL3 has recently been proposed as a promising target for de-
veloping drugs against M. tuberculosis (61). MmpL3 has been found 
to be the target of various antimicrobial drugs with different chemical 
scaffolds (56, 59, 62), and different mutations in mmpL3 have been 
associated with drug resistance (56, 57, 59, 63). Moreover, MmpL3 in-
hibitors have shown synergistic interactions with first- and second-line 

antimycobacterial drugs (57, 64). Despite the apparent attractiveness 
of MmpL3 as a drug target (65), the vulnerability of this protein to 
the action of compounds with different scaffolds has generated con-
troversy regarding the importance of the differences in compound 
chemical structures and their MoAs (55, 65).

To better characterize the MoA of GSK2623870A, we used a chem-
ical proteomics strategy that combined limited proteolysis with mass 
spectrometry to probe protein conformational changes on a proteome 
scale (66–68). Protein extracts of M. tuberculosis harvested during 

A
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B
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e

Fig. 5. Analysis of metabolite changes in M. smegmatis after treatment with the GSK compound GSK2623870A. (A) Pairwise similarity between M. smegmatis me-
tabolome response profiles to 16 GSK compounds with no similarity to known MoAs. (B) Schematic representation of trehalose monomycolate exporter protein MmpL3. 
Transmembrane segments are represented in violet. Circles indicate the locations of amino acid changes associated with resistance of M. tuberculosis to antimycobacte-
rial lead compounds previously found to select for resistance mutations in MmpL3. These compounds include SQ109 (blue), THPP (orange), and SPIROS (purple). The 
black star indicates the amino acid change associated with resistance to the GSK compound GSK2623870A. The genomes of the M. tuberculosis H37Rv and Beijing GC1237 
mutant strains contain an A to G SNP at position 755, which resulted in a tyrosine to cysteine missense mutation at position 252 of the MmpL3 protein. (C) Results from 
limited proteolysis analysis. Each dot in the volcano plot represents the relative difference in peptide abundance between the treated and untreated proteome extracts. 
Proteins highlighted in red are known to physically interact with fatty acid synthase FAS-I (figs. S17 and S18). For each protein, the size of the dot reflects the number of 
interacting partners (80) with significant conformational changes. (D) Rapid metabolic changes induced by the GSK antimicrobial compound GSK2623870A. Each dot 
corresponds to the R2 and Z-score values of the metabolite 5 min after exposure of M. smegmatis to the antimicrobial compound. Metabolites highlighted in red are in-
volved in fatty acid metabolism.
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exponential growth were incubated with the GSK2623870A compound 
for 5 min before conducting limited proteolysis. The analysis identified 
30,532 peptides mapping to 2564 unique proteins in M. tuberculosis 
(table S8). For each peptide, we quantified the difference in abundance 
between the treated and untreated proteome samples. Differences in 
peptide abundance reflected protein conformational changes induced 
by the action of the compound. Such conformational changes can re-
flect direct binding events or protein network rearrangements by dis-
ruption of protein-protein interactions. For 69 peptides mapping to 60 
unique proteins, we detected significant changes between the treated 
and untreated conditions (absolute log2 fold change ≥ 2 and P ≤ 0.01) 
(Fig. 5C). Whereas no significant changes were associated with MmpL3, 
we found several conformational changes in proteins involved in fat-
ty acid metabolism. In particular, the fatty acid synthase FAS-I pro-
tein (Rv2524c) exhibited multiple conformational changes together 
with many of its interacting proteins, such as FadA, FadA3, and FabD 
(Fig. 5C and figs. S17 and S18). This finding was consistent with the 
most rapid metabolic changes (absolute log2 fold change ≥ 1 and R2 ≥ 
0.6; 5 min after treatment) induced by GSK2623870A. These meta-
bolic changes occurred for several metabolites in close proximity to 
FAS-I, exemplified by the depletion of the enzyme substrate malonyl-
CoA (Fig. 5D). Proteins with a conformational change included the 
known penicillin target PbpA, as well as proteins involved in the tri-
carboxylic acid cycle. Collective evidence suggests a complex MoA for 
GSK2623870A due to potentially multiple targets or an indirect role 
for MmpL3 as a drug importer (55).

DISCUSSION
We describe here a general approach to systematically quantify and in-
terpret dynamic metabolome responses at high throughput to predict 
the MoAs of small molecules, independent of whether their targets 
were metabolic or not. The large compendium of drug-metabolome 
profiles that we generated could be used as a reference data set to assess 
similarity in the responses of mycobacteria to new antimicrobial com-
pounds. We predicted and experimentally validated compounds in the 
GSK library and identified new inhibitors of DNA replication and folate 
biosynthesis. Network-based analysis of dynamic drug-metabolome 
changes resolved distinct metabolic responses that were specific to drug 
MoAs and were used here to identify compounds with potential new 
MoAs against mycobacterial targets. Metabolic changes could be de-
tected in the absence of growth inhibitory conditions (fig. S19), rep-
resenting a key advantage over classical bacterial growth assays. This 
feature was crucial to enable identification of a group of six antimyco-
bacterial compounds with similar yet distinguishable metabolic sig-
natures. WGS revealed that MmpL3 mediated resistance to one of the 
GSK compounds in M. tuberculosis, and limited proteolysis analysis 
suggested that fatty acid metabolism was the main cellular process in 
M. tuberculosis targeted by this compound.

Overall, our results suggested that the compound GSK2623870A 
mainly affected fatty acid metabolism, similar to THPP, expanding the 
diversity of chemical compounds that potentially could be used to tar-
get metabolic processes upstream of mycolic acid biosynthesis. Al-
though the exact functions and roles of MmpL3 in mediating the MoA 
of this GSK compound still remain to be elucidated, the mutant and 
proteome results confirmed the initial metabolome-based prediction 
of an unconventional MoA for this group of compounds. Whereas the 
16 antimycobacterial compounds with predicted unconventional MoAs 
exhibited very modest inhibitory activity in M. smegmatis, they elicited 

subtle but unique metabolic patterns reflecting the underlying spec-
ificity of their MoAs. Although these compounds are promising can-
didates for discovering new targets, future studies should investigate 
the direct metabolic impact of these compounds on M. tuberculosis to 
better characterize their MoAs. Nevertheless, the relevance of these 
compounds tested in M. smegmatis for M. tuberculosis illustrates that 
our approach was able to classify compound MoAs in a manner largely 
independent of the organism. In contrast to traditional chemogenomic 
methods that are often restricted to model organisms, our metabolome-
based approach did not require libraries of mutant bacteria and so can 
be applied to any bacterial species. For reasons of technical simplicity 
and cost, it might be preferred to perform the first large-scale profiling 
of compounds in a related, nonpathogenic bacterium given that many 
MoAs will be similar and drug efficacy can be driven by factors such as 
drug penetration.

Current state-of-the-art methods to monitor and interpret dynam-
ic drug-induced cellular responses at the genome level do not scale 
with the size of typical compound libraries used in drug discovery 
(28–30, 32, 38, 69). Although traditional omics methods such as pro-
teomics, transcriptomics, or genome sequencing (70) provide a large 
information output, our nontargeted metabolomics workflow enabled 
rapid measurements at a 10- to 100-fold higher throughput. No single 
technology provides a general solution for identification of a com-
pound’s MoA or specific molecular target. Our approach, however, 
could play a crucial role in the initial characterization of new com-
pounds and could provide complementary data for the interpretation 
of cytological and phenotypic assays (12, 13). One major limitation of 
our approach is the difficulty in decoupling metabolic changes that are 
direct consequences of drug-target interactions from indirect adaptive 
metabolic adaptations. At the cost of a lower throughput, time-resolved 
metabolic profiles with seconds resolution could better resolve direct 
drug effects and facilitate interpretation of drug-induced metabolome 
changes. However, it is worth noting that if drug targets are inactive or 
have low expression under the conditions tested, then drug effects will 
be more subtle or impossible to detect. Mimicking in vivo conditions in 
an in vitro setting can improve the efficacy of phenotypic-based assay 
screens and maximize the output of a metabolomics approach.

Our metabolome-based screening approach can be applied directly 
to extract multiple quantitative signatures indicative of functional 
properties of MoAs in large compound libraries. A major advantage of 
our systematic and rapid methodology for predicting MoAs in large 
chemical screens is the discrimination of compounds with previously 
known MoAs from those that have new MoAs. Knowing the MoAs of 
compounds at an early stage of drug discovery can guide the selection 
of the most promising leads, even in cases where the drugs do not yet 
exhibit strong bactericidal or bacteriostatic effects. For drug develop-
ment, MoA identification is important for follow-up studies, biomarker 
development, and drug target identification. Even after a relevant drug 
target is established, additional functional information from our me-
tabolomics drug profiling strategy could help to identify unwanted 
off-target effects or establish new roles for the target protein within 
its biological network. Hence, combining our metabolomics and 
computational-based methodology with other omics strategies and 
more targeted validation technologies should help to overcome the 
current challenge of predicting the biological effects of drugs before 
clinical trials begin.

Although the set of reference compounds used in this study was 
restricted to antibiotics with the most common MoAs, future studies 
may benefit from a larger set of characterized compounds, regardless 
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of their antimicrobial activities. We envisage that by increasing the 
number of tested organisms and reference compounds, alternative 
computational approaches, such as machine learning (71), could open 
up new opportunities in antibiotic discovery. Beyond inference of 
the MoAs of bioactive compounds, our approach could be used to 
identify direct and indirect enzymatic targets of nonlethal compounds, 
paving the way to predictive models and rational design of effective 
combinatorial treatments (71, 72).

MATERIALS AND METHODS
Study design
This study was designed to evaluate the ability of a mass spectrometry 
approach to predict the MoA of small molecules by monitoring dy-
namic metabolic responses of mycobacteria after drug treatment. To 
this end, we established a new combined experimental-computational 
framework for large-scale profiling of bacterial metabolic responses to 
treatment with bioactive compounds. This approach was first tested in 
M. smegmatis on a reference set of 62 compounds applied at different 
dosages. Rigorous analysis of metabolomics data demonstrated that 
antibiotics with a similar MoA elicited similar metabolic changes. This 
strategy was used to characterize the MoAs of a set of 212 new antimy-
cobacterial compounds, the result of an antibiotic discovery effort of 
the pharmaceutical company GSK. This library was used under the 
terms and conditions of a material transfer agreement (MTA) between 
GSK and ETH Institution.

Strains and media
M. smegmatis MC2-155 was used throughout this study. Standard 7H9 
minimal medium was used to perform the metabolome drug screen-
ing experiment. One liter of medium contained 2.5 g of Na2HPO4, 1 g 
of KH2PO4, 0.5 g of (NH4)2SO4, 0.5 g of l-glutamic acid, 0.1 g of NaCl, 
0.1 g of MgSO4·7H2O, 40 mg of ferric ammonium citrate, 1.8 mg of 
ZnSO4·7H2O, 1 mg of CuSO4, 1 mg of pyridoxine, 0.5 mg of CaCl2, 
0.5 mg of biotin, 2 g of glycerol as carbon source, and 0.05% (v/v) 
tyloxapol. M. tuberculosis: H37Rv (ATCC 27294), Beijing GC1237 
(73), M. smegmatis MC2-155 (74), Mycobacterium marinum (Aranson 
1926), Mycobacterium aurum (75), and their derivatives were cul-
tured at 37° or 32°C, in the case of M. marinum, in Middlebrook 7H9 
medium supplemented with ADC [0.5% (w/v) bovine serum albumin, 
0.2% (w/v) dextrose, 0.085% (w/v) NaCl, 0.0003% (w/v) beef catalase; 
Difco], 0.5% (w/v) glycerol, and 0.05% (w/v) Tween 80 or in solid 
Middlebrook 7H11 medium supplemented with OADC [0.05% (w/v) 
oleic acid, 0.5% (w/v) bovine serum albumin, 0.2% (w/v) dextrose, 
0.085% (w/v) NaCl, 0.0003% (w/v) beef catalase; Difco].

Metabolomics drug screening
M. smegmatis was precultivated at 37°C and 300 rpm for 24 hours, 
diluted 1:80 in 125 ml of fresh medium in 1-liter shake flasks, and 
grown for ~15 hours. Cell cultures (700 l) were distributed in 96-well 
deep plates at an OD of about 0.4 and incubated for 1 hour at 37°C and 
300 rpm before exposure to the drug treatment by the addition of 10 l 
of drug solution. Sixty-two reference compounds were chosen from 
well-characterized antibiotics and stress factors, covering most of the 
currently available antibacterial MoAs (see Fig. 1C and table S1 for 
more details), together with 212 antituberculosis compounds, ob-
tained from GSK. All stocks were prepared in DMSO solution, except 
the following ones, which were prepared in H2O due to the low solu-
bility of the compounds in DMSO: CPR, GEN, GET, NEO, H2O2, 

Parq, NaOH, CuCl, EDTA, CTX, OCI, and PMB. The GSK compounds 
were used at a single concentration of 10 M, whereas the reference 
compounds were administered in at least three different dosages, aim-
ing for ~100, ~50, and ~20% inhibition of growth rate (table S2). All 
treatments were measured in three biological replicates. DMSO and 
H2O treatments were included on every plate as control, resulting in 
433 different treatments.

Samples were taken immediately before treatment and after 5, 30, 
60, 180, 360, and 600 min from drug exposure. At each time point, 
40 l of whole-cell broth was transferred to 120-l medium on micro-
titer plates, and OD was measured at 595 nm. In parallel, 40 l of the 
cultures was directly transferred to 120 l of extraction liquid solution 
containing 50% (v/v) methanol and 50% (v/v) acetonitrile at −20°C. 
The extraction was carried out by incubating the samples for 1 hour 
at −20°C. Samples were centrifuged for 5 min at 4000 rpm, and 80 l 
of the supernatant was transferred to 96-well storage plates and stored 
at −80°C.

Physiology
Growth rates of M. smegmatis upon drug treatment were calculated 
as the slopes of linear fits to log-transformed OD curves experimen-
tally determined from 30 to 360 min after drug exposure (fig. S5). In 
few cases, apparent negative growth rates caused by cell death were 
set to zero. The inhibition ratios reported in table S4 equal one minus 
the ratio between the growth rate of the treatment and the average 
growth rate of the controls on the same plate.

Mass spectrometry measurement, spectral data processing, 
and annotation
The analysis was performed on a platform consisting of an Agilent 
Series 1100 LC pump coupled to a Gerstel MPS2 autosampler and 
an Agilent 6550 Series Quadrupole Time of Flight mass spectrome-
ter as described previously (36). Mass spectra were recorded from 
mass/charge ratio (m/z) 50 to 1000 using the highest resolving power 
(4 GHz HiRes).

All steps of mass spectrometry data processing and analysis were 
performed with Matlab (MathWorks). For each acquired spectra, 
ion peaks were identified with the findpeaks function of the Signal 
toolbox. Identified peaks with less than 5000 ion counts were excluded 
from further analysis. Detected ions were matched to a list of me-
tabolites based on the corresponding molar mass. Because there is 
no available manually curated genome-scale model of M. smegmatis 
metabolism, we compiled a comprehensive list of metabolites from 
the following models: M. tuberculosis H37Rv model from the Model 
SEED database [Seed83332.1 (76); http://blog.theseed.org/model_seed] 
and the manually curated M. tuberculosis model from (77), E. coli 
K12 model iJO1366 from (78), and M. smegmatis MC2-155 model 
from the Biomodels database [BMID000000141548 (79); www.ebi.
ac.uk/biomodels-main]. For the full list of metabolites used for an-
notation, see table S6. The chemical formula of each metabolite was 
used to calculate the deprotonated monoisotopic molecular mass. 
Detected ions within a mass tolerance difference of less than 0.003 Da 
were associated to the nearest reference metabolites. In total, 1006 
different reference masses could be detected (see tables S2 to S6 for 
the reference masses and the associated metabolites).

Supercoiling assay
To test gyrase activity, the M. tuberculosis and E. coli DNA gyrase 
assay kit from Inspiralis and TopoGEN, respectively, were used. The 
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procedure adopted to monitor DNA gyrase–dependent supercoiling 
followed kit instructions. Reaction was performed in 30-l volume 
by incubating about 250 ng of pHOT1 Relaxed DNA together with the 
purified gyrase protein at 37°C for 45 min. Moxifloxacin or the com-
pound GSK1066288A was added to the reaction mixtures at different 
concentrations. Termination, detection, and readout were carried out 
as described in the kit protocol using agarose gel electrophoresis. Bands 
were quantified using ImageJ. Raw gel pictures can be found in the 
Supplementary Materials.

Folate assay
The capability of compounds to inhibit the folate biosynthesis was 
tested with an enzyme assay. Full protein extract was prepared from 
M. smegmatis the following way. Cell culture (70 ml) in exponential 
phase (at about OD of 1) was harvested and centrifuged for 10 min at 
4°C and 5000 rpm. The precipitate was resuspended in 8-ml lysis 
buffer [100 mM tris buffer (pH, 7.5), 4 mM phenylmethylsulfonyl 
fluoride, 2 mM dithiothreitol, 5 mM MgCl2]. French press was used 
to extract the cells. The samples were centrifuged for 10 min at 4°C 
and 5000 rpm, and the supernatant was filtered to concentrate the 
protein extract to about 2 ml (centrifuged at 4°C and 5000 rpm in an 
ultrafiltration tube). The reactions were performed in 150 l on a 
microtiter plate. The ratio of the buffer/protein extract was 1:2 in 
the solution. The reaction was started by adding 0.1 and 0.4 mM of 
dihydrofolate and NADPH (reduced form of nicotinamide adenine 
dinucleotide phosphate), respectively. A plate reader was used to mea-
sure the decrease in the NADPH level at 340 nm for 1 hour, sampling 
the absorbance every 26 s.

Selection of spontaneous GSK2623870A-resistant mutants 
of M. tuberculosis H37Rv and Beijing GC1237 and WGS
GSK2623870A spontaneous resistant mutants were selected on 7H11 
plates supplemented with OADC and 16× MIC of antibiotic at 37°C 
after 3 weeks of incubation. Genomic DNA was isolated from saturated 
cultures of the different mycobacteria and resistant isolates. Sequencing 
was carried out by GATC, using Illumina MySeq 300 and HiSeq 4000 
instruments. Identification of SNPs, insertions, and deletions was done 
using different bioinformatics tools as GATK modules, PICARD, and 
SnpEff. Raw sequence reads were deposited in the National Center for 
Biotechnology Information sequence read archive database under ac-
cession number SRP116576.

Statistical analyses
Statistical analyses were performed using Matlab R2015b (MathWorks). 
In total, we monitored dynamic metabolic changes across 431 com-
pound treatment conditions and two mock treatments (vehicle control 
H2O or DMSO) over seven time points in three biological replicates. 
To assess differences in metabolite abundance before and after treat-
ment, we used a multiple linear regression scheme. Similarity of meta
bolic profiles between different treatments was assessed using an 
entropy-based measure of similarity (Mutual Information), and pre-
diction of compound MoAs was based on an iterative hypergeomet-
ric test described in (45). When necessary, P values were corrected for 
multiple tests by q value estimation. Metabolomics data and analysis 
results are available as supplementary tables.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/10/429/eaal3973/DC1
Materials and Methods

Fig. S1. Schematic description of MS data normalization and analysis.
Fig. S2. Analysis of correlations across biological replicates.
Fig. S3. Distribution of responsive metabolites.
Fig. S4. Number of affected metabolites per MoA.
Fig. S5. Distribution of growth inhibitory activities.
Fig. S6. Pathway enrichment for metabolome responses to antibiotics with seven major MoA.
Fig. S7. Pairwise drug similarity.
Fig. S8. Metabolome-based similarity.
Fig. S9. Similarity between compounds with equivalent MoAs as a function of the difference in 
growth inhibition.
Fig. S10. Distribution of predicted MoAs.
Fig. S11. Pairwise compound chemical distance.
Fig. S12. M. tuberculosis gyrase assay.
Fig. S13. M. tuberculosis and E. coli gyrase assay.
Fig. S14. Distribution of growth inhibitory activities for GSK compounds with classified and 
unclassified MoAs.
Fig. S15. Pathway enrichment analysis for compounds with potential unconventional MoAs.
Fig. S16. Common metabolic responses across GSK compounds with potential new MoAs.
Fig. S17. Protein-protein interactions among proteins with significant conformational changes 
detected by limited proteolysis analysis.
Fig. S18. Robustness of results from limited proteolysis.
Fig. S19. Similarity between compounds with equivalent MoAs as a function of growth 
inhibition.
Fig. S20. Data normalization.
Fig. S21. Schematic representation of the procedure used to estimate pairwise similarity 
among tested compounds.
Table S1. Antibiotic perturbation list.
Table S2. Metabolome data (perturbation name versus metabolites data matrix).
Table S3. Impulse model fitting results (maximum fold change and R2 matrices).
Table S4. MoA predictions (list of top predicted MoAs and complete matrix of enrichment  
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Table S7. Comparison of similarity metrics.
Table S8. Results from analysis of limited proteolysis data.
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